Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-9=0
Me whakarea ngā taha e rua ki te 3.
\left(x-3\right)\left(x+3\right)=0
Whakaarohia te x^{2}-9. Tuhia anō te x^{2}-9 hei x^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+3=0.
\frac{1}{3}x^{2}=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=3\times 3
Me whakarea ngā taha e rua ki te 3, te tau utu o \frac{1}{3}.
x^{2}=9
Whakareatia te 3 ki te 3, ka 9.
x=3 x=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{1}{3}x^{2}-3=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{3}\left(-3\right)}}{2\times \frac{1}{3}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{3} mō a, 0 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{3}\left(-3\right)}}{2\times \frac{1}{3}}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{4}{3}\left(-3\right)}}{2\times \frac{1}{3}}
Whakareatia -4 ki te \frac{1}{3}.
x=\frac{0±\sqrt{4}}{2\times \frac{1}{3}}
Whakareatia -\frac{4}{3} ki te -3.
x=\frac{0±2}{2\times \frac{1}{3}}
Tuhia te pūtakerua o te 4.
x=\frac{0±2}{\frac{2}{3}}
Whakareatia 2 ki te \frac{1}{3}.
x=3
Nā, me whakaoti te whārite x=\frac{0±2}{\frac{2}{3}} ina he tāpiri te ±. Whakawehe 2 ki te \frac{2}{3} mā te whakarea 2 ki te tau huripoki o \frac{2}{3}.
x=-3
Nā, me whakaoti te whārite x=\frac{0±2}{\frac{2}{3}} ina he tango te ±. Whakawehe -2 ki te \frac{2}{3} mā te whakarea -2 ki te tau huripoki o \frac{2}{3}.
x=3 x=-3
Kua oti te whārite te whakatau.