Whakaoti mō x
x=-6
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}x^{2}-\frac{4}{3}x-4=16
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\frac{1}{3}x^{2}-\frac{4}{3}x-4-16=16-16
Me tango 16 mai i ngā taha e rua o te whārite.
\frac{1}{3}x^{2}-\frac{4}{3}x-4-16=0
Mā te tango i te 16 i a ia ake anō ka toe ko te 0.
\frac{1}{3}x^{2}-\frac{4}{3}x-20=0
Tango 16 mai i -4.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{1}{3}\left(-20\right)}}{2\times \frac{1}{3}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{3} mō a, -\frac{4}{3} mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times \frac{1}{3}\left(-20\right)}}{2\times \frac{1}{3}}
Pūruatia -\frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-\frac{4}{3}\left(-20\right)}}{2\times \frac{1}{3}}
Whakareatia -4 ki te \frac{1}{3}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}+\frac{80}{3}}}{2\times \frac{1}{3}}
Whakareatia -\frac{4}{3} ki te -20.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{256}{9}}}{2\times \frac{1}{3}}
Tāpiri \frac{16}{9} ki te \frac{80}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{16}{3}}{2\times \frac{1}{3}}
Tuhia te pūtakerua o te \frac{256}{9}.
x=\frac{\frac{4}{3}±\frac{16}{3}}{2\times \frac{1}{3}}
Ko te tauaro o -\frac{4}{3} ko \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{16}{3}}{\frac{2}{3}}
Whakareatia 2 ki te \frac{1}{3}.
x=\frac{\frac{20}{3}}{\frac{2}{3}}
Nā, me whakaoti te whārite x=\frac{\frac{4}{3}±\frac{16}{3}}{\frac{2}{3}} ina he tāpiri te ±. Tāpiri \frac{4}{3} ki te \frac{16}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=10
Whakawehe \frac{20}{3} ki te \frac{2}{3} mā te whakarea \frac{20}{3} ki te tau huripoki o \frac{2}{3}.
x=-\frac{4}{\frac{2}{3}}
Nā, me whakaoti te whārite x=\frac{\frac{4}{3}±\frac{16}{3}}{\frac{2}{3}} ina he tango te ±. Tango \frac{16}{3} mai i \frac{4}{3} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-6
Whakawehe -4 ki te \frac{2}{3} mā te whakarea -4 ki te tau huripoki o \frac{2}{3}.
x=10 x=-6
Kua oti te whārite te whakatau.
\frac{1}{3}x^{2}-\frac{4}{3}x-4=16
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{3}x^{2}-\frac{4}{3}x-4-\left(-4\right)=16-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
\frac{1}{3}x^{2}-\frac{4}{3}x=16-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
\frac{1}{3}x^{2}-\frac{4}{3}x=20
Tango -4 mai i 16.
\frac{\frac{1}{3}x^{2}-\frac{4}{3}x}{\frac{1}{3}}=\frac{20}{\frac{1}{3}}
Me whakarea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{\frac{4}{3}}{\frac{1}{3}}\right)x=\frac{20}{\frac{1}{3}}
Mā te whakawehe ki te \frac{1}{3} ka wetekia te whakareanga ki te \frac{1}{3}.
x^{2}-4x=\frac{20}{\frac{1}{3}}
Whakawehe -\frac{4}{3} ki te \frac{1}{3} mā te whakarea -\frac{4}{3} ki te tau huripoki o \frac{1}{3}.
x^{2}-4x=60
Whakawehe 20 ki te \frac{1}{3} mā te whakarea 20 ki te tau huripoki o \frac{1}{3}.
x^{2}-4x+\left(-2\right)^{2}=60+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=60+4
Pūrua -2.
x^{2}-4x+4=64
Tāpiri 60 ki te 4.
\left(x-2\right)^{2}=64
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=8 x-2=-8
Whakarūnātia.
x=10 x=-6
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}