Whakaoti mō x
x=6\sqrt{3}-9\approx 1.392304845
x=-6\sqrt{3}-9\approx -19.392304845
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}x^{2}+6x=9
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\frac{1}{3}x^{2}+6x-9=9-9
Me tango 9 mai i ngā taha e rua o te whārite.
\frac{1}{3}x^{2}+6x-9=0
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
x=\frac{-6±\sqrt{6^{2}-4\times \frac{1}{3}\left(-9\right)}}{2\times \frac{1}{3}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{3} mō a, 6 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times \frac{1}{3}\left(-9\right)}}{2\times \frac{1}{3}}
Pūrua 6.
x=\frac{-6±\sqrt{36-\frac{4}{3}\left(-9\right)}}{2\times \frac{1}{3}}
Whakareatia -4 ki te \frac{1}{3}.
x=\frac{-6±\sqrt{36+12}}{2\times \frac{1}{3}}
Whakareatia -\frac{4}{3} ki te -9.
x=\frac{-6±\sqrt{48}}{2\times \frac{1}{3}}
Tāpiri 36 ki te 12.
x=\frac{-6±4\sqrt{3}}{2\times \frac{1}{3}}
Tuhia te pūtakerua o te 48.
x=\frac{-6±4\sqrt{3}}{\frac{2}{3}}
Whakareatia 2 ki te \frac{1}{3}.
x=\frac{4\sqrt{3}-6}{\frac{2}{3}}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{3}}{\frac{2}{3}} ina he tāpiri te ±. Tāpiri -6 ki te 4\sqrt{3}.
x=6\sqrt{3}-9
Whakawehe -6+4\sqrt{3} ki te \frac{2}{3} mā te whakarea -6+4\sqrt{3} ki te tau huripoki o \frac{2}{3}.
x=\frac{-4\sqrt{3}-6}{\frac{2}{3}}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{3}}{\frac{2}{3}} ina he tango te ±. Tango 4\sqrt{3} mai i -6.
x=-6\sqrt{3}-9
Whakawehe -6-4\sqrt{3} ki te \frac{2}{3} mā te whakarea -6-4\sqrt{3} ki te tau huripoki o \frac{2}{3}.
x=6\sqrt{3}-9 x=-6\sqrt{3}-9
Kua oti te whārite te whakatau.
\frac{1}{3}x^{2}+6x=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{1}{3}x^{2}+6x}{\frac{1}{3}}=\frac{9}{\frac{1}{3}}
Me whakarea ngā taha e rua ki te 3.
x^{2}+\frac{6}{\frac{1}{3}}x=\frac{9}{\frac{1}{3}}
Mā te whakawehe ki te \frac{1}{3} ka wetekia te whakareanga ki te \frac{1}{3}.
x^{2}+18x=\frac{9}{\frac{1}{3}}
Whakawehe 6 ki te \frac{1}{3} mā te whakarea 6 ki te tau huripoki o \frac{1}{3}.
x^{2}+18x=27
Whakawehe 9 ki te \frac{1}{3} mā te whakarea 9 ki te tau huripoki o \frac{1}{3}.
x^{2}+18x+9^{2}=27+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+18x+81=27+81
Pūrua 9.
x^{2}+18x+81=108
Tāpiri 27 ki te 81.
\left(x+9\right)^{2}=108
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{108}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=6\sqrt{3} x+9=-6\sqrt{3}
Whakarūnātia.
x=6\sqrt{3}-9 x=-6\sqrt{3}-9
Me tango 9 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}