Whakaoti mō x
x=\frac{\sqrt{111}-6}{5}\approx 0.907130751
x=\frac{-\sqrt{111}-6}{5}\approx -3.307130751
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { 3 } x ^ { 2 } + \frac { 4 } { 5 } x = 1
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}x^{2}+\frac{4}{5}x=1
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\frac{1}{3}x^{2}+\frac{4}{5}x-1=1-1
Me tango 1 mai i ngā taha e rua o te whārite.
\frac{1}{3}x^{2}+\frac{4}{5}x-1=0
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
x=\frac{-\frac{4}{5}±\sqrt{\left(\frac{4}{5}\right)^{2}-4\times \frac{1}{3}\left(-1\right)}}{2\times \frac{1}{3}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{3} mō a, \frac{4}{5} mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-4\times \frac{1}{3}\left(-1\right)}}{2\times \frac{1}{3}}
Pūruatia \frac{4}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-\frac{4}{3}\left(-1\right)}}{2\times \frac{1}{3}}
Whakareatia -4 ki te \frac{1}{3}.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}+\frac{4}{3}}}{2\times \frac{1}{3}}
Whakareatia -\frac{4}{3} ki te -1.
x=\frac{-\frac{4}{5}±\sqrt{\frac{148}{75}}}{2\times \frac{1}{3}}
Tāpiri \frac{16}{25} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{2\times \frac{1}{3}}
Tuhia te pūtakerua o te \frac{148}{75}.
x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}}
Whakareatia 2 ki te \frac{1}{3}.
x=\frac{\frac{2\sqrt{111}}{15}-\frac{4}{5}}{\frac{2}{3}}
Nā, me whakaoti te whārite x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}} ina he tāpiri te ±. Tāpiri -\frac{4}{5} ki te \frac{2\sqrt{111}}{15}.
x=\frac{\sqrt{111}-6}{5}
Whakawehe -\frac{4}{5}+\frac{2\sqrt{111}}{15} ki te \frac{2}{3} mā te whakarea -\frac{4}{5}+\frac{2\sqrt{111}}{15} ki te tau huripoki o \frac{2}{3}.
x=\frac{-\frac{2\sqrt{111}}{15}-\frac{4}{5}}{\frac{2}{3}}
Nā, me whakaoti te whārite x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}} ina he tango te ±. Tango \frac{2\sqrt{111}}{15} mai i -\frac{4}{5}.
x=\frac{-\sqrt{111}-6}{5}
Whakawehe -\frac{4}{5}-\frac{2\sqrt{111}}{15} ki te \frac{2}{3} mā te whakarea -\frac{4}{5}-\frac{2\sqrt{111}}{15} ki te tau huripoki o \frac{2}{3}.
x=\frac{\sqrt{111}-6}{5} x=\frac{-\sqrt{111}-6}{5}
Kua oti te whārite te whakatau.
\frac{1}{3}x^{2}+\frac{4}{5}x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{1}{3}x^{2}+\frac{4}{5}x}{\frac{1}{3}}=\frac{1}{\frac{1}{3}}
Me whakarea ngā taha e rua ki te 3.
x^{2}+\frac{\frac{4}{5}}{\frac{1}{3}}x=\frac{1}{\frac{1}{3}}
Mā te whakawehe ki te \frac{1}{3} ka wetekia te whakareanga ki te \frac{1}{3}.
x^{2}+\frac{12}{5}x=\frac{1}{\frac{1}{3}}
Whakawehe \frac{4}{5} ki te \frac{1}{3} mā te whakarea \frac{4}{5} ki te tau huripoki o \frac{1}{3}.
x^{2}+\frac{12}{5}x=3
Whakawehe 1 ki te \frac{1}{3} mā te whakarea 1 ki te tau huripoki o \frac{1}{3}.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=3+\left(\frac{6}{5}\right)^{2}
Whakawehea te \frac{12}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{6}{5}. Nā, tāpiria te pūrua o te \frac{6}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{12}{5}x+\frac{36}{25}=3+\frac{36}{25}
Pūruatia \frac{6}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{111}{25}
Tāpiri 3 ki te \frac{36}{25}.
\left(x+\frac{6}{5}\right)^{2}=\frac{111}{25}
Tauwehea x^{2}+\frac{12}{5}x+\frac{36}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{\frac{111}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{6}{5}=\frac{\sqrt{111}}{5} x+\frac{6}{5}=-\frac{\sqrt{111}}{5}
Whakarūnātia.
x=\frac{\sqrt{111}-6}{5} x=\frac{-\sqrt{111}-6}{5}
Me tango \frac{6}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}