Whakaoti mō m
m=2\left(n+12\right)
Whakaoti mō n
n=\frac{m-24}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}m=\frac{2n}{3}+8
He hanga arowhānui tō te whārite.
\frac{\frac{1}{3}m}{\frac{1}{3}}=\frac{\frac{2n}{3}+8}{\frac{1}{3}}
Me whakarea ngā taha e rua ki te 3.
m=\frac{\frac{2n}{3}+8}{\frac{1}{3}}
Mā te whakawehe ki te \frac{1}{3} ka wetekia te whakareanga ki te \frac{1}{3}.
m=2n+24
Whakawehe \frac{2n}{3}+8 ki te \frac{1}{3} mā te whakarea \frac{2n}{3}+8 ki te tau huripoki o \frac{1}{3}.
\frac{2}{3}n+8=\frac{1}{3}m
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2}{3}n=\frac{1}{3}m-8
Tangohia te 8 mai i ngā taha e rua.
\frac{2}{3}n=\frac{m}{3}-8
He hanga arowhānui tō te whārite.
\frac{\frac{2}{3}n}{\frac{2}{3}}=\frac{\frac{m}{3}-8}{\frac{2}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
n=\frac{\frac{m}{3}-8}{\frac{2}{3}}
Mā te whakawehe ki te \frac{2}{3} ka wetekia te whakareanga ki te \frac{2}{3}.
n=\frac{m}{2}-12
Whakawehe \frac{m}{3}-8 ki te \frac{2}{3} mā te whakarea \frac{m}{3}-8 ki te tau huripoki o \frac{2}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}