Aromātai
-\frac{26}{3}\approx -8.666666667
Tauwehe
-\frac{26}{3} = -8\frac{2}{3} = -8.666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}-8+12-14+1
Whakareatia te 3 ki te 4, ka 12. Whakareatia te 7 ki te -2, ka -14.
\frac{1}{3}-\frac{24}{3}+12-14+1
Me tahuri te 8 ki te hautau \frac{24}{3}.
\frac{1-24}{3}+12-14+1
Tā te mea he rite te tauraro o \frac{1}{3} me \frac{24}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{23}{3}+12-14+1
Tangohia te 24 i te 1, ka -23.
-\frac{23}{3}+\frac{36}{3}-14+1
Me tahuri te 12 ki te hautau \frac{36}{3}.
\frac{-23+36}{3}-14+1
Tā te mea he rite te tauraro o -\frac{23}{3} me \frac{36}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{3}-14+1
Tāpirihia te -23 ki te 36, ka 13.
\frac{13}{3}-\frac{42}{3}+1
Me tahuri te 14 ki te hautau \frac{42}{3}.
\frac{13-42}{3}+1
Tā te mea he rite te tauraro o \frac{13}{3} me \frac{42}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{29}{3}+1
Tangohia te 42 i te 13, ka -29.
-\frac{29}{3}+\frac{3}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{-29+3}{3}
Tā te mea he rite te tauraro o -\frac{29}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{26}{3}
Tāpirihia te -29 ki te 3, ka -26.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}