Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}x+\frac{1}{3}-x=\frac{2}{9}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te x+1.
-\frac{2}{3}x+\frac{1}{3}=\frac{2}{9}
Pahekotia te \frac{1}{3}x me -x, ka -\frac{2}{3}x.
-\frac{2}{3}x=\frac{2}{9}-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua.
-\frac{2}{3}x=\frac{2}{9}-\frac{3}{9}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{2}{9} me \frac{1}{3} ki te hautau me te tautūnga 9.
-\frac{2}{3}x=\frac{2-3}{9}
Tā te mea he rite te tauraro o \frac{2}{9} me \frac{3}{9}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{3}x=-\frac{1}{9}
Tangohia te 3 i te 2, ka -1.
x=-\frac{1}{9}\left(-\frac{3}{2}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{2}, te tau utu o -\frac{2}{3}.
x=\frac{-\left(-3\right)}{9\times 2}
Me whakarea te -\frac{1}{9} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{3}{18}
Mahia ngā whakarea i roto i te hautanga \frac{-\left(-3\right)}{9\times 2}.
x=\frac{1}{6}
Whakahekea te hautanga \frac{3}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.