Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}\times 9+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 9-2x.
\frac{9}{3}+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te 9, ka \frac{9}{3}.
3+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakawehea te 9 ki te 3, kia riro ko 3.
3+\frac{-2}{3}x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te -2, ka \frac{-2}{3}.
3-\frac{2}{3}x-1=-\frac{2}{3}x+2
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
2-\frac{2}{3}x=-\frac{2}{3}x+2
Tangohia te 1 i te 3, ka 2.
2-\frac{2}{3}x+\frac{2}{3}x=2
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
2=2
Pahekotia te -\frac{2}{3}x me \frac{2}{3}x, ka 0.
\text{true}
Whakatauritea te 2 me te 2.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
\frac{1}{3}\times 9+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 9-2x.
\frac{9}{3}+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te 9, ka \frac{9}{3}.
3+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakawehea te 9 ki te 3, kia riro ko 3.
3+\frac{-2}{3}x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te -2, ka \frac{-2}{3}.
3-\frac{2}{3}x-1=-\frac{2}{3}x+2
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
2-\frac{2}{3}x=-\frac{2}{3}x+2
Tangohia te 1 i te 3, ka 2.
2-\frac{2}{3}x+\frac{2}{3}x=2
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
2=2
Pahekotia te -\frac{2}{3}x me \frac{2}{3}x, ka 0.
\text{true}
Whakatauritea te 2 me te 2.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.