Whakaoti mō x (complex solution)
x\in \mathrm{C}
Whakaoti mō x
x\in \mathrm{R}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 1 } { 3 } ( 9 - 2 x ) - 1 = - \frac { 2 } { 3 } x + 2
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\times 9+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 9-2x.
\frac{9}{3}+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te 9, ka \frac{9}{3}.
3+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakawehea te 9 ki te 3, kia riro ko 3.
3+\frac{-2}{3}x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te -2, ka \frac{-2}{3}.
3-\frac{2}{3}x-1=-\frac{2}{3}x+2
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
2-\frac{2}{3}x=-\frac{2}{3}x+2
Tangohia te 1 i te 3, ka 2.
2-\frac{2}{3}x+\frac{2}{3}x=2
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
2=2
Pahekotia te -\frac{2}{3}x me \frac{2}{3}x, ka 0.
\text{true}
Whakatauritea te 2 me te 2.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
\frac{1}{3}\times 9+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 9-2x.
\frac{9}{3}+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te 9, ka \frac{9}{3}.
3+\frac{1}{3}\left(-2\right)x-1=-\frac{2}{3}x+2
Whakawehea te 9 ki te 3, kia riro ko 3.
3+\frac{-2}{3}x-1=-\frac{2}{3}x+2
Whakareatia te \frac{1}{3} ki te -2, ka \frac{-2}{3}.
3-\frac{2}{3}x-1=-\frac{2}{3}x+2
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
2-\frac{2}{3}x=-\frac{2}{3}x+2
Tangohia te 1 i te 3, ka 2.
2-\frac{2}{3}x+\frac{2}{3}x=2
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
2=2
Pahekotia te -\frac{2}{3}x me \frac{2}{3}x, ka 0.
\text{true}
Whakatauritea te 2 me te 2.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}