Whakaoti mō m
m=-14
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\times 6m+\frac{1}{3}\times 21=m-7
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 6m+21.
\frac{6}{3}m+\frac{1}{3}\times 21=m-7
Whakareatia te \frac{1}{3} ki te 6, ka \frac{6}{3}.
2m+\frac{1}{3}\times 21=m-7
Whakawehea te 6 ki te 3, kia riro ko 2.
2m+\frac{21}{3}=m-7
Whakareatia te \frac{1}{3} ki te 21, ka \frac{21}{3}.
2m+7=m-7
Whakawehea te 21 ki te 3, kia riro ko 7.
2m+7-m=-7
Tangohia te m mai i ngā taha e rua.
m+7=-7
Pahekotia te 2m me -m, ka m.
m=-7-7
Tangohia te 7 mai i ngā taha e rua.
m=-14
Tangohia te 7 i te -7, ka -14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}