Whakaoti mō y
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\times 2y+\frac{1}{3}+\frac{1}{2}y=\frac{2}{5}\left(1-2y\right)-4
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 2y+1.
\frac{2}{3}y+\frac{1}{3}+\frac{1}{2}y=\frac{2}{5}\left(1-2y\right)-4
Whakareatia te \frac{1}{3} ki te 2, ka \frac{2}{3}.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}\left(1-2y\right)-4
Pahekotia te \frac{2}{3}y me \frac{1}{2}y, ka \frac{7}{6}y.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}+\frac{2}{5}\left(-2\right)y-4
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{5} ki te 1-2y.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}+\frac{2\left(-2\right)}{5}y-4
Tuhia te \frac{2}{5}\left(-2\right) hei hautanga kotahi.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}+\frac{-4}{5}y-4
Whakareatia te 2 ki te -2, ka -4.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}-\frac{4}{5}y-4
Ka taea te hautanga \frac{-4}{5} te tuhi anō ko -\frac{4}{5} mā te tango i te tohu tōraro.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}-\frac{4}{5}y-\frac{20}{5}
Me tahuri te 4 ki te hautau \frac{20}{5}.
\frac{7}{6}y+\frac{1}{3}=\frac{2-20}{5}-\frac{4}{5}y
Tā te mea he rite te tauraro o \frac{2}{5} me \frac{20}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{6}y+\frac{1}{3}=-\frac{18}{5}-\frac{4}{5}y
Tangohia te 20 i te 2, ka -18.
\frac{7}{6}y+\frac{1}{3}+\frac{4}{5}y=-\frac{18}{5}
Me tāpiri te \frac{4}{5}y ki ngā taha e rua.
\frac{59}{30}y+\frac{1}{3}=-\frac{18}{5}
Pahekotia te \frac{7}{6}y me \frac{4}{5}y, ka \frac{59}{30}y.
\frac{59}{30}y=-\frac{18}{5}-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua.
\frac{59}{30}y=-\frac{54}{15}-\frac{5}{15}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri -\frac{18}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
\frac{59}{30}y=\frac{-54-5}{15}
Tā te mea he rite te tauraro o -\frac{54}{15} me \frac{5}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{59}{30}y=-\frac{59}{15}
Tangohia te 5 i te -54, ka -59.
y=-\frac{59}{15}\times \frac{30}{59}
Me whakarea ngā taha e rua ki te \frac{30}{59}, te tau utu o \frac{59}{30}.
y=\frac{-59\times 30}{15\times 59}
Me whakarea te -\frac{59}{15} ki te \frac{30}{59} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y=\frac{-1770}{885}
Mahia ngā whakarea i roto i te hautanga \frac{-59\times 30}{15\times 59}.
y=-2
Whakawehea te -1770 ki te 885, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}