Whakaoti mō m
m = \frac{15}{2} = 7\frac{1}{2} = 7.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\left(-\frac{5}{7}\right)m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te -\frac{5}{7}m+\frac{6}{7}.
\frac{1\left(-5\right)}{3\times 7}m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Me whakarea te \frac{1}{3} ki te -\frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-5}{21}m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-5\right)}{3\times 7}.
-\frac{5}{21}m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Ka taea te hautanga \frac{-5}{21} te tuhi anō ko -\frac{5}{21} mā te tango i te tohu tōraro.
-\frac{5}{21}m+\frac{1\times 6}{3\times 7}=1-\frac{1}{3}m
Me whakarea te \frac{1}{3} ki te \frac{6}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{21}m+\frac{6}{21}=1-\frac{1}{3}m
Mahia ngā whakarea i roto i te hautanga \frac{1\times 6}{3\times 7}.
-\frac{5}{21}m+\frac{2}{7}=1-\frac{1}{3}m
Whakahekea te hautanga \frac{6}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{5}{21}m+\frac{2}{7}+\frac{1}{3}m=1
Me tāpiri te \frac{1}{3}m ki ngā taha e rua.
\frac{2}{21}m+\frac{2}{7}=1
Pahekotia te -\frac{5}{21}m me \frac{1}{3}m, ka \frac{2}{21}m.
\frac{2}{21}m=1-\frac{2}{7}
Tangohia te \frac{2}{7} mai i ngā taha e rua.
\frac{2}{21}m=\frac{7}{7}-\frac{2}{7}
Me tahuri te 1 ki te hautau \frac{7}{7}.
\frac{2}{21}m=\frac{7-2}{7}
Tā te mea he rite te tauraro o \frac{7}{7} me \frac{2}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{21}m=\frac{5}{7}
Tangohia te 2 i te 7, ka 5.
m=\frac{5}{7}\times \frac{21}{2}
Me whakarea ngā taha e rua ki te \frac{21}{2}, te tau utu o \frac{2}{21}.
m=\frac{5\times 21}{7\times 2}
Me whakarea te \frac{5}{7} ki te \frac{21}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
m=\frac{105}{14}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 21}{7\times 2}.
m=\frac{15}{2}
Whakahekea te hautanga \frac{105}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}