Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}\left(-\frac{1}{2}\right)x+\frac{1}{3}\left(-\frac{1}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te -\frac{1}{2}x-\frac{1}{2}.
\frac{1\left(-1\right)}{3\times 2}x+\frac{1}{3}\left(-\frac{1}{2}\right)
Me whakarea te \frac{1}{3} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{6}x+\frac{1}{3}\left(-\frac{1}{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{3\times 2}.
-\frac{1}{6}x+\frac{1}{3}\left(-\frac{1}{2}\right)
Ka taea te hautanga \frac{-1}{6} te tuhi anō ko -\frac{1}{6} mā te tango i te tohu tōraro.
-\frac{1}{6}x+\frac{1\left(-1\right)}{3\times 2}
Me whakarea te \frac{1}{3} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{6}x+\frac{-1}{6}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{3\times 2}.
-\frac{1}{6}x-\frac{1}{6}
Ka taea te hautanga \frac{-1}{6} te tuhi anō ko -\frac{1}{6} mā te tango i te tohu tōraro.
\frac{1}{3}\left(-\frac{1}{2}\right)x+\frac{1}{3}\left(-\frac{1}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te -\frac{1}{2}x-\frac{1}{2}.
\frac{1\left(-1\right)}{3\times 2}x+\frac{1}{3}\left(-\frac{1}{2}\right)
Me whakarea te \frac{1}{3} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{6}x+\frac{1}{3}\left(-\frac{1}{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{3\times 2}.
-\frac{1}{6}x+\frac{1}{3}\left(-\frac{1}{2}\right)
Ka taea te hautanga \frac{-1}{6} te tuhi anō ko -\frac{1}{6} mā te tango i te tohu tōraro.
-\frac{1}{6}x+\frac{1\left(-1\right)}{3\times 2}
Me whakarea te \frac{1}{3} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{6}x+\frac{-1}{6}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{3\times 2}.
-\frac{1}{6}x-\frac{1}{6}
Ka taea te hautanga \frac{-1}{6} te tuhi anō ko -\frac{1}{6} mā te tango i te tohu tōraro.