Aromātai
0.18
Tauwehe
\frac{3 ^ {2}}{2 \cdot 5 ^ {2}} = 0.18
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 } { 3 } \times 5 \frac { 2 } { 5 } \times 0.1
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\times \frac{25+2}{5}\times 0.1
Whakareatia te 5 ki te 5, ka 25.
\frac{1}{3}\times \frac{27}{5}\times 0.1
Tāpirihia te 25 ki te 2, ka 27.
\frac{1\times 27}{3\times 5}\times 0.1
Me whakarea te \frac{1}{3} ki te \frac{27}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{27}{15}\times 0.1
Mahia ngā whakarea i roto i te hautanga \frac{1\times 27}{3\times 5}.
\frac{9}{5}\times 0.1
Whakahekea te hautanga \frac{27}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{9}{5}\times \frac{1}{10}
Me tahuri ki tau ā-ira 0.1 ki te hautau \frac{1}{10}.
\frac{9\times 1}{5\times 10}
Me whakarea te \frac{9}{5} ki te \frac{1}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{9}{50}
Mahia ngā whakarea i roto i te hautanga \frac{9\times 1}{5\times 10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}