Whakaoti mō h
h = \frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{314}{3}h\left(20^{2}+12^{2}+20\times 12\right)=123088
Whakareatia te \frac{1}{3} ki te 314, ka \frac{314}{3}.
\frac{314}{3}h\left(400+12^{2}+20\times 12\right)=123088
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
\frac{314}{3}h\left(400+144+20\times 12\right)=123088
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\frac{314}{3}h\left(544+20\times 12\right)=123088
Tāpirihia te 400 ki te 144, ka 544.
\frac{314}{3}h\left(544+240\right)=123088
Whakareatia te 20 ki te 12, ka 240.
\frac{314}{3}h\times 784=123088
Tāpirihia te 544 ki te 240, ka 784.
\frac{314\times 784}{3}h=123088
Tuhia te \frac{314}{3}\times 784 hei hautanga kotahi.
\frac{246176}{3}h=123088
Whakareatia te 314 ki te 784, ka 246176.
h=123088\times \frac{3}{246176}
Me whakarea ngā taha e rua ki te \frac{3}{246176}, te tau utu o \frac{246176}{3}.
h=\frac{123088\times 3}{246176}
Tuhia te 123088\times \frac{3}{246176} hei hautanga kotahi.
h=\frac{369264}{246176}
Whakareatia te 123088 ki te 3, ka 369264.
h=\frac{3}{2}
Whakahekea te hautanga \frac{369264}{246176} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 123088.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}