Aromātai
-4
Tauwehe
-4
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\sqrt{0}-2\sqrt{\frac{6\times 4+1}{4}}+\frac{1}{10}\sqrt{64+36}
Whakareatia te 0 ki te 81, ka 0.
\frac{1}{3}\times 0-2\sqrt{\frac{6\times 4+1}{4}}+\frac{1}{10}\sqrt{64+36}
Tātaitia te pūtakerua o 0 kia tae ki 0.
0-2\sqrt{\frac{6\times 4+1}{4}}+\frac{1}{10}\sqrt{64+36}
Whakareatia te \frac{1}{3} ki te 0, ka 0.
0-2\sqrt{\frac{24+1}{4}}+\frac{1}{10}\sqrt{64+36}
Whakareatia te 6 ki te 4, ka 24.
0-2\sqrt{\frac{25}{4}}+\frac{1}{10}\sqrt{64+36}
Tāpirihia te 24 ki te 1, ka 25.
0-2\times \frac{5}{2}+\frac{1}{10}\sqrt{64+36}
Tuhia anō te pūtake rua o te whakawehenga \frac{25}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
0-5+\frac{1}{10}\sqrt{64+36}
Me whakakore te 2 me te 2.
-5+\frac{1}{10}\sqrt{64+36}
Tangohia te 5 i te 0, ka -5.
-5+\frac{1}{10}\sqrt{100}
Tāpirihia te 64 ki te 36, ka 100.
-5+\frac{1}{10}\times 10
Tātaitia te pūtakerua o 100 kia tae ki 10.
-5+1
Me whakakore te 10 me te 10.
-4
Tāpirihia te -5 ki te 1, ka -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}