Aromātai
\frac{120}{19}\approx 6.315789474
Tauwehe
\frac{2 ^ {3} \cdot 3 \cdot 5}{19} = 6\frac{6}{19} = 6.315789473684211
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{3}}{\frac{3}{180}+\frac{2}{180}+\frac{1}{40}}
Ko te maha noa iti rawa atu o 60 me 90 ko 180. Me tahuri \frac{1}{60} me \frac{1}{90} ki te hautau me te tautūnga 180.
\frac{\frac{1}{3}}{\frac{3+2}{180}+\frac{1}{40}}
Tā te mea he rite te tauraro o \frac{3}{180} me \frac{2}{180}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{3}}{\frac{5}{180}+\frac{1}{40}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{1}{3}}{\frac{1}{36}+\frac{1}{40}}
Whakahekea te hautanga \frac{5}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{1}{3}}{\frac{10}{360}+\frac{9}{360}}
Ko te maha noa iti rawa atu o 36 me 40 ko 360. Me tahuri \frac{1}{36} me \frac{1}{40} ki te hautau me te tautūnga 360.
\frac{\frac{1}{3}}{\frac{10+9}{360}}
Tā te mea he rite te tauraro o \frac{10}{360} me \frac{9}{360}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{3}}{\frac{19}{360}}
Tāpirihia te 10 ki te 9, ka 19.
\frac{1}{3}\times \frac{360}{19}
Whakawehe \frac{1}{3} ki te \frac{19}{360} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{19}{360}.
\frac{1\times 360}{3\times 19}
Me whakarea te \frac{1}{3} ki te \frac{360}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{360}{57}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 360}{3\times 19}.
\frac{120}{19}
Whakahekea te hautanga \frac{360}{57} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}