Whakaoti mō x
x=-11
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}x+\frac{1}{3}\left(-1\right)-1=\frac{1}{2}\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te x-1.
\frac{1}{3}x-\frac{1}{3}-1=\frac{1}{2}\left(x+1\right)
Whakareatia te \frac{1}{3} ki te -1, ka -\frac{1}{3}.
\frac{1}{3}x-\frac{1}{3}-\frac{3}{3}=\frac{1}{2}\left(x+1\right)
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{1}{3}x+\frac{-1-3}{3}=\frac{1}{2}\left(x+1\right)
Tā te mea he rite te tauraro o -\frac{1}{3} me \frac{3}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{3}x-\frac{4}{3}=\frac{1}{2}\left(x+1\right)
Tangohia te 3 i te -1, ka -4.
\frac{1}{3}x-\frac{4}{3}=\frac{1}{2}x+\frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+1.
\frac{1}{3}x-\frac{4}{3}-\frac{1}{2}x=\frac{1}{2}
Tangohia te \frac{1}{2}x mai i ngā taha e rua.
-\frac{1}{6}x-\frac{4}{3}=\frac{1}{2}
Pahekotia te \frac{1}{3}x me -\frac{1}{2}x, ka -\frac{1}{6}x.
-\frac{1}{6}x=\frac{1}{2}+\frac{4}{3}
Me tāpiri te \frac{4}{3} ki ngā taha e rua.
-\frac{1}{6}x=\frac{3}{6}+\frac{8}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{4}{3} ki te hautau me te tautūnga 6.
-\frac{1}{6}x=\frac{3+8}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{8}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{6}x=\frac{11}{6}
Tāpirihia te 3 ki te 8, ka 11.
x=\frac{11}{6}\left(-6\right)
Me whakarea ngā taha e rua ki te -6, te tau utu o -\frac{1}{6}.
x=\frac{11\left(-6\right)}{6}
Tuhia te \frac{11}{6}\left(-6\right) hei hautanga kotahi.
x=\frac{-66}{6}
Whakareatia te 11 ki te -6, ka -66.
x=-11
Whakawehea te -66 ki te 6, kia riro ko -11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}