Aromātai
-\frac{25}{42}\approx -0.595238095
Tauwehe
-\frac{25}{42} = -0.5952380952380952
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}+\left(\frac{8}{12}-\frac{9}{12}\right)\times 6-\frac{3}{7}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{1}{3}+\frac{8-9}{12}\times 6-\frac{3}{7}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{3}-\frac{1}{12}\times 6-\frac{3}{7}
Tangohia te 9 i te 8, ka -1.
\frac{1}{3}+\frac{-6}{12}-\frac{3}{7}
Tuhia te -\frac{1}{12}\times 6 hei hautanga kotahi.
\frac{1}{3}-\frac{1}{2}-\frac{3}{7}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{2}{6}-\frac{3}{6}-\frac{3}{7}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{2-3}{6}-\frac{3}{7}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{6}-\frac{3}{7}
Tangohia te 3 i te 2, ka -1.
-\frac{7}{42}-\frac{18}{42}
Ko te maha noa iti rawa atu o 6 me 7 ko 42. Me tahuri -\frac{1}{6} me \frac{3}{7} ki te hautau me te tautūnga 42.
\frac{-7-18}{42}
Tā te mea he rite te tauraro o -\frac{7}{42} me \frac{18}{42}, me tango rāua mā te tango i ō raua taurunga.
-\frac{25}{42}
Tangohia te 18 i te -7, ka -25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}