Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}+4-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{1}{3}+\frac{12}{3}-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
Me tahuri te 4 ki te hautau \frac{12}{3}.
\frac{1+12}{3}-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
Tā te mea he rite te tauraro o \frac{1}{3} me \frac{12}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{3}-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
Tāpirihia te 1 ki te 12, ka 13.
\frac{13}{3}-\frac{4}{3}\times \frac{1}{3}=\frac{1}{4}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{13}{3}-\frac{4\times 1}{3\times 3}=\frac{1}{4}
Me whakarea te \frac{4}{3} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{13}{3}-\frac{4}{9}=\frac{1}{4}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{3\times 3}.
\frac{39}{9}-\frac{4}{9}=\frac{1}{4}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{13}{3} me \frac{4}{9} ki te hautau me te tautūnga 9.
\frac{39-4}{9}=\frac{1}{4}
Tā te mea he rite te tauraro o \frac{39}{9} me \frac{4}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{35}{9}=\frac{1}{4}
Tangohia te 4 i te 39, ka 35.
\frac{140}{36}=\frac{9}{36}
Ko te maha noa iti rawa atu o 9 me 4 ko 36. Me tahuri \frac{35}{9} me \frac{1}{4} ki te hautau me te tautūnga 36.
\text{false}
Whakatauritea te \frac{140}{36} me te \frac{9}{36}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}