Whakaoti mō x (complex solution)
x=\frac{-5+\sqrt{87}i}{4}\approx -1.25+2.331844763i
x=\frac{-\sqrt{87}i-5}{4}\approx -1.25-2.331844763i
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x\left(x+2\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6x\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3,x,2+x,6x.
\left(6x^{2}+12x\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6x ki te x+2.
2x^{2}+4x+6x+12=6x-\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+12x ki te \frac{1}{3}.
2x^{2}+10x+12=6x-\left(x+2\right)
Pahekotia te 4x me 6x, ka 10x.
2x^{2}+10x+12=6x-x-2
Hei kimi i te tauaro o x+2, kimihia te tauaro o ia taurangi.
2x^{2}+10x+12=5x-2
Pahekotia te 6x me -x, ka 5x.
2x^{2}+10x+12-5x=-2
Tangohia te 5x mai i ngā taha e rua.
2x^{2}+5x+12=-2
Pahekotia te 10x me -5x, ka 5x.
2x^{2}+5x+12+2=0
Me tāpiri te 2 ki ngā taha e rua.
2x^{2}+5x+14=0
Tāpirihia te 12 ki te 2, ka 14.
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 14}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 5 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\times 14}}{2\times 2}
Pūrua 5.
x=\frac{-5±\sqrt{25-8\times 14}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-5±\sqrt{25-112}}{2\times 2}
Whakareatia -8 ki te 14.
x=\frac{-5±\sqrt{-87}}{2\times 2}
Tāpiri 25 ki te -112.
x=\frac{-5±\sqrt{87}i}{2\times 2}
Tuhia te pūtakerua o te -87.
x=\frac{-5±\sqrt{87}i}{4}
Whakareatia 2 ki te 2.
x=\frac{-5+\sqrt{87}i}{4}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{87}i}{4} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{87}.
x=\frac{-\sqrt{87}i-5}{4}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{87}i}{4} ina he tango te ±. Tango i\sqrt{87} mai i -5.
x=\frac{-5+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i-5}{4}
Kua oti te whārite te whakatau.
6x\left(x+2\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6x\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3,x,2+x,6x.
\left(6x^{2}+12x\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6x ki te x+2.
2x^{2}+4x+6x+12=6x-\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+12x ki te \frac{1}{3}.
2x^{2}+10x+12=6x-\left(x+2\right)
Pahekotia te 4x me 6x, ka 10x.
2x^{2}+10x+12=6x-x-2
Hei kimi i te tauaro o x+2, kimihia te tauaro o ia taurangi.
2x^{2}+10x+12=5x-2
Pahekotia te 6x me -x, ka 5x.
2x^{2}+10x+12-5x=-2
Tangohia te 5x mai i ngā taha e rua.
2x^{2}+5x+12=-2
Pahekotia te 10x me -5x, ka 5x.
2x^{2}+5x=-2-12
Tangohia te 12 mai i ngā taha e rua.
2x^{2}+5x=-14
Tangohia te 12 i te -2, ka -14.
\frac{2x^{2}+5x}{2}=-\frac{14}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{5}{2}x=-\frac{14}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{5}{2}x=-7
Whakawehe -14 ki te 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-7+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-7+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{87}{16}
Tāpiri -7 ki te \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=-\frac{87}{16}
Tauwehea x^{2}+\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{-\frac{87}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{4}=\frac{\sqrt{87}i}{4} x+\frac{5}{4}=-\frac{\sqrt{87}i}{4}
Whakarūnātia.
x=\frac{-5+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i-5}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}