Aromātai
\frac{248}{315}\approx 0.787301587
Tauwehe
\frac{2 ^ {3} \cdot 31}{3 ^ {2} \cdot 5 \cdot 7} = 0.7873015873015873
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{15}+\frac{3}{15}+\frac{1}{7}+\frac{1}{9}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{1}{3} me \frac{1}{5} ki te hautau me te tautūnga 15.
\frac{5+3}{15}+\frac{1}{7}+\frac{1}{9}
Tā te mea he rite te tauraro o \frac{5}{15} me \frac{3}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8}{15}+\frac{1}{7}+\frac{1}{9}
Tāpirihia te 5 ki te 3, ka 8.
\frac{56}{105}+\frac{15}{105}+\frac{1}{9}
Ko te maha noa iti rawa atu o 15 me 7 ko 105. Me tahuri \frac{8}{15} me \frac{1}{7} ki te hautau me te tautūnga 105.
\frac{56+15}{105}+\frac{1}{9}
Tā te mea he rite te tauraro o \frac{56}{105} me \frac{15}{105}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{71}{105}+\frac{1}{9}
Tāpirihia te 56 ki te 15, ka 71.
\frac{213}{315}+\frac{35}{315}
Ko te maha noa iti rawa atu o 105 me 9 ko 315. Me tahuri \frac{71}{105} me \frac{1}{9} ki te hautau me te tautūnga 315.
\frac{213+35}{315}
Tā te mea he rite te tauraro o \frac{213}{315} me \frac{35}{315}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{248}{315}
Tāpirihia te 213 ki te 35, ka 248.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}