Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2n+1}{3\left(2n+1\right)}+\frac{3}{3\left(2n+1\right)}-\frac{1}{2n+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2n+1 ko 3\left(2n+1\right). Whakareatia \frac{1}{3} ki te \frac{2n+1}{2n+1}. Whakareatia \frac{1}{2n+1} ki te \frac{3}{3}.
\frac{2n+1+3}{3\left(2n+1\right)}-\frac{1}{2n+3}
Tā te mea he rite te tauraro o \frac{2n+1}{3\left(2n+1\right)} me \frac{3}{3\left(2n+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2n+4}{3\left(2n+1\right)}-\frac{1}{2n+3}
Whakakotahitia ngā kupu rite i 2n+1+3.
\frac{\left(2n+4\right)\left(2n+3\right)}{3\left(2n+1\right)\left(2n+3\right)}-\frac{3\left(2n+1\right)}{3\left(2n+1\right)\left(2n+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3\left(2n+1\right) me 2n+3 ko 3\left(2n+1\right)\left(2n+3\right). Whakareatia \frac{2n+4}{3\left(2n+1\right)} ki te \frac{2n+3}{2n+3}. Whakareatia \frac{1}{2n+3} ki te \frac{3\left(2n+1\right)}{3\left(2n+1\right)}.
\frac{\left(2n+4\right)\left(2n+3\right)-3\left(2n+1\right)}{3\left(2n+1\right)\left(2n+3\right)}
Tā te mea he rite te tauraro o \frac{\left(2n+4\right)\left(2n+3\right)}{3\left(2n+1\right)\left(2n+3\right)} me \frac{3\left(2n+1\right)}{3\left(2n+1\right)\left(2n+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4n^{2}+6n+8n+12-6n-3}{3\left(2n+1\right)\left(2n+3\right)}
Mahia ngā whakarea i roto o \left(2n+4\right)\left(2n+3\right)-3\left(2n+1\right).
\frac{4n^{2}+8n+9}{3\left(2n+1\right)\left(2n+3\right)}
Whakakotahitia ngā kupu rite i 4n^{2}+6n+8n+12-6n-3.
\frac{4n^{2}+8n+9}{12n^{2}+24n+9}
Whakarohaina te 3\left(2n+1\right)\left(2n+3\right).