Whakaoti mō x
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{25}\times 20+\frac{1}{25}\left(-1\right)x=\frac{4}{25}x-\frac{3}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{25} ki te 20-x.
\frac{20}{25}+\frac{1}{25}\left(-1\right)x=\frac{4}{25}x-\frac{3}{5}
Whakareatia te \frac{1}{25} ki te 20, ka \frac{20}{25}.
\frac{4}{5}+\frac{1}{25}\left(-1\right)x=\frac{4}{25}x-\frac{3}{5}
Whakahekea te hautanga \frac{20}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{4}{5}-\frac{1}{25}x=\frac{4}{25}x-\frac{3}{5}
Whakareatia te \frac{1}{25} ki te -1, ka -\frac{1}{25}.
\frac{4}{5}-\frac{1}{25}x-\frac{4}{25}x=-\frac{3}{5}
Tangohia te \frac{4}{25}x mai i ngā taha e rua.
\frac{4}{5}-\frac{1}{5}x=-\frac{3}{5}
Pahekotia te -\frac{1}{25}x me -\frac{4}{25}x, ka -\frac{1}{5}x.
-\frac{1}{5}x=-\frac{3}{5}-\frac{4}{5}
Tangohia te \frac{4}{5} mai i ngā taha e rua.
-\frac{1}{5}x=\frac{-3-4}{5}
Tā te mea he rite te tauraro o -\frac{3}{5} me \frac{4}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{5}x=-\frac{7}{5}
Tangohia te 4 i te -3, ka -7.
x=-\frac{7}{5}\left(-5\right)
Me whakarea ngā taha e rua ki te -5, te tau utu o -\frac{1}{5}.
x=\frac{-7\left(-5\right)}{5}
Tuhia te -\frac{7}{5}\left(-5\right) hei hautanga kotahi.
x=\frac{35}{5}
Whakareatia te -7 ki te -5, ka 35.
x=7
Whakawehea te 35 ki te 5, kia riro ko 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}