Whakaoti mō x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+4-\left(8x-4\right)=\left(2x-1\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-1,2x+1,4.
8x+4-8x+4=\left(2x-1\right)\left(2x+1\right)
Hei kimi i te tauaro o 8x-4, kimihia te tauaro o ia taurangi.
4+4=\left(2x-1\right)\left(2x+1\right)
Pahekotia te 8x me -8x, ka 0.
8=\left(2x-1\right)\left(2x+1\right)
Tāpirihia te 4 ki te 4, ka 8.
8=\left(2x\right)^{2}-1
Whakaarohia te \left(2x-1\right)\left(2x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
8=2^{2}x^{2}-1
Whakarohaina te \left(2x\right)^{2}.
8=4x^{2}-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-1=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x^{2}=8+1
Me tāpiri te 1 ki ngā taha e rua.
4x^{2}=9
Tāpirihia te 8 ki te 1, ka 9.
x^{2}=\frac{9}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{2} x=-\frac{3}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
8x+4-\left(8x-4\right)=\left(2x-1\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-1,2x+1,4.
8x+4-8x+4=\left(2x-1\right)\left(2x+1\right)
Hei kimi i te tauaro o 8x-4, kimihia te tauaro o ia taurangi.
4+4=\left(2x-1\right)\left(2x+1\right)
Pahekotia te 8x me -8x, ka 0.
8=\left(2x-1\right)\left(2x+1\right)
Tāpirihia te 4 ki te 4, ka 8.
8=\left(2x\right)^{2}-1
Whakaarohia te \left(2x-1\right)\left(2x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
8=2^{2}x^{2}-1
Whakarohaina te \left(2x\right)^{2}.
8=4x^{2}-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-1=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x^{2}-1-8=0
Tangohia te 8 mai i ngā taha e rua.
4x^{2}-9=0
Tangohia te 8 i te -1, ka -9.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-9\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-9\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-9\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{144}}{2\times 4}
Whakareatia -16 ki te -9.
x=\frac{0±12}{2\times 4}
Tuhia te pūtakerua o te 144.
x=\frac{0±12}{8}
Whakareatia 2 ki te 4.
x=\frac{3}{2}
Nā, me whakaoti te whārite x=\frac{0±12}{8} ina he tāpiri te ±. Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{3}{2}
Nā, me whakaoti te whārite x=\frac{0±12}{8} ina he tango te ±. Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{3}{2} x=-\frac{3}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}