Aromātai
-\frac{1}{2}+\frac{1}{2x}+\frac{3}{4x^{2}}
Tauwehe
-\frac{\frac{1}{2}\left(x-\frac{1-\sqrt{7}}{2}\right)\left(x-\frac{\sqrt{7}+1}{2}\right)}{x^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2x}-\frac{1}{2}+\frac{12}{16x^{2}}
Whakahekea te hautanga \frac{7}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{1}{2x}-\frac{x}{2x}+\frac{12}{16x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2x me 2 ko 2x. Whakareatia \frac{1}{2} ki te \frac{x}{x}.
\frac{1-x}{2x}+\frac{12}{16x^{2}}
Tā te mea he rite te tauraro o \frac{1}{2x} me \frac{x}{2x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(1-x\right)\times 8x}{16x^{2}}+\frac{12}{16x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2x me 16x^{2} ko 16x^{2}. Whakareatia \frac{1-x}{2x} ki te \frac{8x}{8x}.
\frac{\left(1-x\right)\times 8x+12}{16x^{2}}
Tā te mea he rite te tauraro o \frac{\left(1-x\right)\times 8x}{16x^{2}} me \frac{12}{16x^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8x-8x^{2}+12}{16x^{2}}
Mahia ngā whakarea i roto o \left(1-x\right)\times 8x+12.
\frac{-2\times 4\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{16x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{8x-8x^{2}+12}{16x^{2}}.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{2x^{2}}
Me whakakore tahi te 2\times 4 i te taurunga me te tauraro.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
Me whakakore tahi te -1 i te taurunga me te tauraro.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
Hei kimi i te tauaro o -\frac{1}{2}\sqrt{7}+\frac{1}{2}, kimihia te tauaro o ia taurangi.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)}{-2x^{2}}
Hei kimi i te tauaro o \frac{1}{2}\sqrt{7}+\frac{1}{2}, kimihia te tauaro o ia taurangi.
\frac{x^{2}-x-\frac{1}{4}\left(\sqrt{7}\right)^{2}+\frac{1}{4}}{-2x^{2}}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+\frac{1}{2}\sqrt{7}-\frac{1}{2} ki te x-\frac{1}{2}\sqrt{7}-\frac{1}{2} ka whakakotahi i ngā kupu rite.
\frac{x^{2}-x-\frac{1}{4}\times 7+\frac{1}{4}}{-2x^{2}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{x^{2}-x-\frac{7}{4}+\frac{1}{4}}{-2x^{2}}
Whakareatia te -\frac{1}{4} ki te 7, ka -\frac{7}{4}.
\frac{x^{2}-x-\frac{3}{2}}{-2x^{2}}
Tāpirihia te -\frac{7}{4} ki te \frac{1}{4}, ka -\frac{3}{2}.
\frac{\frac{1}{2}\times 2\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\frac{1}{2}\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-x^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\frac{1}{2}x^{2}-\frac{1}{2}x-\frac{3}{4}}{-x^{2}}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}