Aromātai
\frac{2}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)}
Kimi Pārōnaki e ai ki x
-\frac{2\left(\left(6x-2\right)^{2}-19\right)}{3\left(\left(2x-3\right)\left(2x-1\right)\left(x+1\right)\right)^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\left(2x-3\right)\left(x+1\right)}-\frac{1}{\left(2x-1\right)\left(x+1\right)}
Tauwehea te 2x^{2}-x-3. Tauwehea te 2x^{2}+x-1.
\frac{2x-1}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)}-\frac{2x-3}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(2x-3\right)\left(x+1\right) me \left(2x-1\right)\left(x+1\right) ko \left(2x-3\right)\left(2x-1\right)\left(x+1\right). Whakareatia \frac{1}{\left(2x-3\right)\left(x+1\right)} ki te \frac{2x-1}{2x-1}. Whakareatia \frac{1}{\left(2x-1\right)\left(x+1\right)} ki te \frac{2x-3}{2x-3}.
\frac{2x-1-\left(2x-3\right)}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)}
Tā te mea he rite te tauraro o \frac{2x-1}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)} me \frac{2x-3}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2x-1-2x+3}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)}
Mahia ngā whakarea i roto o 2x-1-\left(2x-3\right).
\frac{2}{\left(2x-3\right)\left(2x-1\right)\left(x+1\right)}
Whakakotahitia ngā kupu rite i 2x-1-2x+3.
\frac{2}{4x^{3}-4x^{2}-5x+3}
Whakarohaina te \left(2x-3\right)\left(2x-1\right)\left(x+1\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}