Whakaoti mō x
x=\frac{\sqrt{537}}{24}+\frac{1}{8}\approx 1.090552519
x=-\frac{\sqrt{537}}{24}+\frac{1}{8}\approx -0.840552519
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-2+x+1=12\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+2,4x-4.
3x-2+1=12\left(x-1\right)\left(x+1\right)
Pahekotia te 2x me x, ka 3x.
3x-1=12\left(x-1\right)\left(x+1\right)
Tāpirihia te -2 ki te 1, ka -1.
3x-1=\left(12x-12\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x-1.
3x-1=12x^{2}-12
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x-12 ki te x+1 ka whakakotahi i ngā kupu rite.
3x-1-12x^{2}=-12
Tangohia te 12x^{2} mai i ngā taha e rua.
3x-1-12x^{2}+12=0
Me tāpiri te 12 ki ngā taha e rua.
3x+11-12x^{2}=0
Tāpirihia te -1 ki te 12, ka 11.
-12x^{2}+3x+11=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-12\right)\times 11}}{2\left(-12\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -12 mō a, 3 mō b, me 11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-12\right)\times 11}}{2\left(-12\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+48\times 11}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{-3±\sqrt{9+528}}{2\left(-12\right)}
Whakareatia 48 ki te 11.
x=\frac{-3±\sqrt{537}}{2\left(-12\right)}
Tāpiri 9 ki te 528.
x=\frac{-3±\sqrt{537}}{-24}
Whakareatia 2 ki te -12.
x=\frac{\sqrt{537}-3}{-24}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{537}}{-24} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{537}.
x=-\frac{\sqrt{537}}{24}+\frac{1}{8}
Whakawehe -3+\sqrt{537} ki te -24.
x=\frac{-\sqrt{537}-3}{-24}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{537}}{-24} ina he tango te ±. Tango \sqrt{537} mai i -3.
x=\frac{\sqrt{537}}{24}+\frac{1}{8}
Whakawehe -3-\sqrt{537} ki te -24.
x=-\frac{\sqrt{537}}{24}+\frac{1}{8} x=\frac{\sqrt{537}}{24}+\frac{1}{8}
Kua oti te whārite te whakatau.
2x-2+x+1=12\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+2,4x-4.
3x-2+1=12\left(x-1\right)\left(x+1\right)
Pahekotia te 2x me x, ka 3x.
3x-1=12\left(x-1\right)\left(x+1\right)
Tāpirihia te -2 ki te 1, ka -1.
3x-1=\left(12x-12\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x-1.
3x-1=12x^{2}-12
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x-12 ki te x+1 ka whakakotahi i ngā kupu rite.
3x-1-12x^{2}=-12
Tangohia te 12x^{2} mai i ngā taha e rua.
3x-12x^{2}=-12+1
Me tāpiri te 1 ki ngā taha e rua.
3x-12x^{2}=-11
Tāpirihia te -12 ki te 1, ka -11.
-12x^{2}+3x=-11
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-12x^{2}+3x}{-12}=-\frac{11}{-12}
Whakawehea ngā taha e rua ki te -12.
x^{2}+\frac{3}{-12}x=-\frac{11}{-12}
Mā te whakawehe ki te -12 ka wetekia te whakareanga ki te -12.
x^{2}-\frac{1}{4}x=-\frac{11}{-12}
Whakahekea te hautanga \frac{3}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{1}{4}x=\frac{11}{12}
Whakawehe -11 ki te -12.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{11}{12}+\left(-\frac{1}{8}\right)^{2}
Whakawehea te -\frac{1}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{8}. Nā, tāpiria te pūrua o te -\frac{1}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{11}{12}+\frac{1}{64}
Pūruatia -\frac{1}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{179}{192}
Tāpiri \frac{11}{12} ki te \frac{1}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{8}\right)^{2}=\frac{179}{192}
Tauwehea x^{2}-\frac{1}{4}x+\frac{1}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{179}{192}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{8}=\frac{\sqrt{537}}{24} x-\frac{1}{8}=-\frac{\sqrt{537}}{24}
Whakarūnātia.
x=\frac{\sqrt{537}}{24}+\frac{1}{8} x=-\frac{\sqrt{537}}{24}+\frac{1}{8}
Me tāpiri \frac{1}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}