Whakaoti mō x
x=\frac{\sqrt{109}-7}{6}\approx 0.573384418
x=\frac{-\sqrt{109}-7}{6}\approx -2.906717751
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(5-x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2-x,x-2,3x^{2}-12.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(5-x\right)
Whakareatia te 3 ki te -1, ka -3.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(5-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
-6-3x-3x^{2}+12=3x+6-\left(5-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -3x+6 ki te x+2 ka whakakotahi i ngā kupu rite.
6-3x-3x^{2}=3x+6-\left(5-x\right)
Tāpirihia te -6 ki te 12, ka 6.
6-3x-3x^{2}=3x+6-5+x
Hei kimi i te tauaro o 5-x, kimihia te tauaro o ia taurangi.
6-3x-3x^{2}=3x+1+x
Tangohia te 5 i te 6, ka 1.
6-3x-3x^{2}=4x+1
Pahekotia te 3x me x, ka 4x.
6-3x-3x^{2}-4x=1
Tangohia te 4x mai i ngā taha e rua.
6-7x-3x^{2}=1
Pahekotia te -3x me -4x, ka -7x.
6-7x-3x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
5-7x-3x^{2}=0
Tangohia te 1 i te 6, ka 5.
-3x^{2}-7x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -7 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 5}}{2\left(-3\right)}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49+12\times 5}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-7\right)±\sqrt{49+60}}{2\left(-3\right)}
Whakareatia 12 ki te 5.
x=\frac{-\left(-7\right)±\sqrt{109}}{2\left(-3\right)}
Tāpiri 49 ki te 60.
x=\frac{7±\sqrt{109}}{2\left(-3\right)}
Ko te tauaro o -7 ko 7.
x=\frac{7±\sqrt{109}}{-6}
Whakareatia 2 ki te -3.
x=\frac{\sqrt{109}+7}{-6}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{109}}{-6} ina he tāpiri te ±. Tāpiri 7 ki te \sqrt{109}.
x=\frac{-\sqrt{109}-7}{6}
Whakawehe 7+\sqrt{109} ki te -6.
x=\frac{7-\sqrt{109}}{-6}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{109}}{-6} ina he tango te ±. Tango \sqrt{109} mai i 7.
x=\frac{\sqrt{109}-7}{6}
Whakawehe 7-\sqrt{109} ki te -6.
x=\frac{-\sqrt{109}-7}{6} x=\frac{\sqrt{109}-7}{6}
Kua oti te whārite te whakatau.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(5-x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2-x,x-2,3x^{2}-12.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(5-x\right)
Whakareatia te 3 ki te -1, ka -3.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(5-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
-6-3x-3x^{2}+12=3x+6-\left(5-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -3x+6 ki te x+2 ka whakakotahi i ngā kupu rite.
6-3x-3x^{2}=3x+6-\left(5-x\right)
Tāpirihia te -6 ki te 12, ka 6.
6-3x-3x^{2}=3x+6-5+x
Hei kimi i te tauaro o 5-x, kimihia te tauaro o ia taurangi.
6-3x-3x^{2}=3x+1+x
Tangohia te 5 i te 6, ka 1.
6-3x-3x^{2}=4x+1
Pahekotia te 3x me x, ka 4x.
6-3x-3x^{2}-4x=1
Tangohia te 4x mai i ngā taha e rua.
6-7x-3x^{2}=1
Pahekotia te -3x me -4x, ka -7x.
-7x-3x^{2}=1-6
Tangohia te 6 mai i ngā taha e rua.
-7x-3x^{2}=-5
Tangohia te 6 i te 1, ka -5.
-3x^{2}-7x=-5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}-7x}{-3}=-\frac{5}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{5}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{7}{3}x=-\frac{5}{-3}
Whakawehe -7 ki te -3.
x^{2}+\frac{7}{3}x=\frac{5}{3}
Whakawehe -5 ki te -3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=\frac{5}{3}+\left(\frac{7}{6}\right)^{2}
Whakawehea te \frac{7}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{6}. Nā, tāpiria te pūrua o te \frac{7}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{5}{3}+\frac{49}{36}
Pūruatia \frac{7}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{109}{36}
Tāpiri \frac{5}{3} ki te \frac{49}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{6}\right)^{2}=\frac{109}{36}
Tauwehea x^{2}+\frac{7}{3}x+\frac{49}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{109}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{6}=\frac{\sqrt{109}}{6} x+\frac{7}{6}=-\frac{\sqrt{109}}{6}
Whakarūnātia.
x=\frac{\sqrt{109}-7}{6} x=\frac{-\sqrt{109}-7}{6}
Me tango \frac{7}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}