Aromātai
-\frac{3}{5}+\frac{1}{5}i=-0.6+0.2i
Wāhi Tūturu
-\frac{3}{5} = -0.6
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
\frac { 1 } { 2 - i } + \frac { 1 - i } { i ( 1 + i ) }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)}
Me whakarea te taurunga me te tauraro o \frac{1}{2-i} ki te haumi hiato o te tauraro, 2+i.
\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)}
Whakareatia te 1 ki te 2+i, ka 2+i.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)}
Whakawehea te 2+i ki te 5, kia riro ko \frac{2}{5}+\frac{1}{5}i.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}}
Whakareatia i ki te 1+i.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i}
Whakaraupapatia anō ngā kīanga tau.
\frac{2}{5}+\frac{1}{5}i-1
Whakawehea te 1-i ki te -1+i, kia riro ko -1.
\frac{2}{5}-1+\frac{1}{5}i
Tangohia te 1 i te \frac{2}{5}+\frac{1}{5}i mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
-\frac{3}{5}+\frac{1}{5}i
Tangohia te 1 i te \frac{2}{5}, ka -\frac{3}{5}.
Re(\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)})
Me whakarea te taurunga me te tauraro o \frac{1}{2-i} ki te haumi hiato o te tauraro, 2+i.
Re(\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)})
Whakareatia te 1 ki te 2+i, ka 2+i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)})
Whakawehea te 2+i ki te 5, kia riro ko \frac{2}{5}+\frac{1}{5}i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}})
Whakareatia i ki te 1+i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i})
Whakaraupapatia anō ngā kīanga tau.
Re(\frac{2}{5}+\frac{1}{5}i-1)
Whakawehea te 1-i ki te -1+i, kia riro ko -1.
Re(\frac{2}{5}-1+\frac{1}{5}i)
Tangohia te 1 i te \frac{2}{5}+\frac{1}{5}i mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
Re(-\frac{3}{5}+\frac{1}{5}i)
Tangohia te 1 i te \frac{2}{5}, ka -\frac{3}{5}.
-\frac{3}{5}
Ko te wāhi tūturu o -\frac{3}{5}+\frac{1}{5}i ko -\frac{3}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}