Aromātai
6
Tauwehe
2\times 3
Tohaina
Kua tāruatia ki te papatopenga
\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{1}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2+\sqrt{3}}{4-3}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Pūrua 2. Pūrua \sqrt{3}.
\frac{2+\sqrt{3}}{1}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Tangohia te 3 i te 4, ka 1.
2+\sqrt{3}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
2+\sqrt{3}+\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{8}}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{1}{2+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{3}.
2+\sqrt{3}+\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{8}}{\sqrt{2}}
Whakaarohia te \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2+\sqrt{3}+\frac{2-\sqrt{3}}{4-3}+\frac{\sqrt{8}}{\sqrt{2}}
Pūrua 2. Pūrua \sqrt{3}.
2+\sqrt{3}+\frac{2-\sqrt{3}}{1}+\frac{\sqrt{8}}{\sqrt{2}}
Tangohia te 3 i te 4, ka 1.
2+\sqrt{3}+2-\sqrt{3}+\frac{\sqrt{8}}{\sqrt{2}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
4+\sqrt{3}-\sqrt{3}+\frac{\sqrt{8}}{\sqrt{2}}
Tāpirihia te 2 ki te 2, ka 4.
4+\frac{\sqrt{8}}{\sqrt{2}}
Pahekotia te \sqrt{3} me -\sqrt{3}, ka 0.
4+\sqrt{4}
Tuhia anō te whakawehe o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{2}} hei pūtake rua o te whakawehenga \sqrt{\frac{8}{2}} ka mahi i te whakawehenga.
4+2
Tātaitia te pūtakerua o 4 kia tae ki 2.
6
Tāpirihia te 4 ki te 2, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}