Aromātai
\frac{18}{31}\approx 0.580645161
Tauwehe
\frac{2 \cdot 3 ^ {2}}{31} = 0.5806451612903226
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2-\frac{1}{3+\frac{1}{\frac{6}{3}-\frac{1}{3}}}}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{1}{2-\frac{1}{3+\frac{1}{\frac{6-1}{3}}}}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2-\frac{1}{3+\frac{1}{\frac{5}{3}}}}
Tangohia te 1 i te 6, ka 5.
\frac{1}{2-\frac{1}{3+1\times \frac{3}{5}}}
Whakawehe 1 ki te \frac{5}{3} mā te whakarea 1 ki te tau huripoki o \frac{5}{3}.
\frac{1}{2-\frac{1}{3+\frac{3}{5}}}
Whakareatia te 1 ki te \frac{3}{5}, ka \frac{3}{5}.
\frac{1}{2-\frac{1}{\frac{15}{5}+\frac{3}{5}}}
Me tahuri te 3 ki te hautau \frac{15}{5}.
\frac{1}{2-\frac{1}{\frac{15+3}{5}}}
Tā te mea he rite te tauraro o \frac{15}{5} me \frac{3}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2-\frac{1}{\frac{18}{5}}}
Tāpirihia te 15 ki te 3, ka 18.
\frac{1}{2-1\times \frac{5}{18}}
Whakawehe 1 ki te \frac{18}{5} mā te whakarea 1 ki te tau huripoki o \frac{18}{5}.
\frac{1}{2-\frac{5}{18}}
Whakareatia te 1 ki te \frac{5}{18}, ka \frac{5}{18}.
\frac{1}{\frac{36}{18}-\frac{5}{18}}
Me tahuri te 2 ki te hautau \frac{36}{18}.
\frac{1}{\frac{36-5}{18}}
Tā te mea he rite te tauraro o \frac{36}{18} me \frac{5}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{\frac{31}{18}}
Tangohia te 5 i te 36, ka 31.
1\times \frac{18}{31}
Whakawehe 1 ki te \frac{31}{18} mā te whakarea 1 ki te tau huripoki o \frac{31}{18}.
\frac{18}{31}
Whakareatia te 1 ki te \frac{18}{31}, ka \frac{18}{31}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}