Whakaoti mō x
x\leq -6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x-4+\frac{1}{3}x\leq -9
Me tāpiri te \frac{1}{3}x ki ngā taha e rua.
\frac{5}{6}x-4\leq -9
Pahekotia te \frac{1}{2}x me \frac{1}{3}x, ka \frac{5}{6}x.
\frac{5}{6}x\leq -9+4
Me tāpiri te 4 ki ngā taha e rua.
\frac{5}{6}x\leq -5
Tāpirihia te -9 ki te 4, ka -5.
x\leq -5\times \frac{6}{5}
Me whakarea ngā taha e rua ki te \frac{6}{5}, te tau utu o \frac{5}{6}. I te mea he tōrunga te \frac{5}{6}, kāore e huri te ahunga koreōrite.
x\leq -6
Whakareatia -5 ki te \frac{6}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}