Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-2\left(2\times 3+1\right)=-2\left(3+1\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x-2\left(6+1\right)=-2\left(3+1\right)
Whakareatia te 2 ki te 3, ka 6.
3x-2\times 7=-2\left(3+1\right)
Tāpirihia te 6 ki te 1, ka 7.
3x-14=-2\left(3+1\right)
Whakareatia te -2 ki te 7, ka -14.
3x-14=-2\times 4
Tāpirihia te 3 ki te 1, ka 4.
3x-14=-8
Whakareatia te -2 ki te 4, ka -8.
3x=-8+14
Me tāpiri te 14 ki ngā taha e rua.
3x=6
Tāpirihia te -8 ki te 14, ka 6.
x=\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
x=2
Whakawehea te 6 ki te 3, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}