Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}x^{2}\left(-\frac{4}{3}\right)
Whakareatia te x ki te x, ka x^{2}.
\frac{1\left(-4\right)}{2\times 3}x^{2}
Me whakarea te \frac{1}{2} ki te -\frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-4}{6}x^{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-4\right)}{2\times 3}.
-\frac{2}{3}x^{2}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}x^{2}\left(-\frac{4}{3}\right))
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1\left(-4\right)}{2\times 3}x^{2})
Me whakarea te \frac{1}{2} ki te -\frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-4}{6}x^{2})
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-4\right)}{2\times 3}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2}{3}x^{2})
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2\left(-\frac{2}{3}\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{4}{3}x^{2-1}
Whakareatia 2 ki te -\frac{2}{3}.
-\frac{4}{3}x^{1}
Tango 1 mai i 2.
-\frac{4}{3}x
Mō tētahi kupu t, t^{1}=t.