Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\left(-\frac{5}{8}\right)^{2}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, -\frac{5}{8} mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Pūruatia -\frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-2\times 2}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4}}{2\times \frac{1}{2}}
Whakareatia -2 ki te 2.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{-\frac{231}{64}}}{2\times \frac{1}{2}}
Tāpiri \frac{25}{64} ki te -4.
x=\frac{-\left(-\frac{5}{8}\right)±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
Tuhia te pūtakerua o te -\frac{231}{64}.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
Ko te tauaro o -\frac{5}{8} ko \frac{5}{8}.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1}
Whakareatia 2 ki te \frac{1}{2}.
x=\frac{5+\sqrt{231}i}{8}
Nā, me whakaoti te whārite x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} ina he tāpiri te ±. Tāpiri \frac{5}{8} ki te \frac{i\sqrt{231}}{8}.
x=\frac{-\sqrt{231}i+5}{8}
Nā, me whakaoti te whārite x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} ina he tango te ±. Tango \frac{i\sqrt{231}}{8} mai i \frac{5}{8}.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
Kua oti te whārite te whakatau.
\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{2}x^{2}-\frac{5}{8}x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
\frac{1}{2}x^{2}-\frac{5}{8}x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{\frac{1}{2}x^{2}-\frac{5}{8}x}{\frac{1}{2}}=-\frac{2}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{\frac{5}{8}}{\frac{1}{2}}\right)x=-\frac{2}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}-\frac{5}{4}x=-\frac{2}{\frac{1}{2}}
Whakawehe -\frac{5}{8} ki te \frac{1}{2} mā te whakarea -\frac{5}{8} ki te tau huripoki o \frac{1}{2}.
x^{2}-\frac{5}{4}x=-4
Whakawehe -2 ki te \frac{1}{2} mā te whakarea -2 ki te tau huripoki o \frac{1}{2}.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-4+\left(-\frac{5}{8}\right)^{2}
Whakawehea te -\frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{8}. Nā, tāpiria te pūrua o te -\frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-4+\frac{25}{64}
Pūruatia -\frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{231}{64}
Tāpiri -4 ki te \frac{25}{64}.
\left(x-\frac{5}{8}\right)^{2}=-\frac{231}{64}
Tauwehea x^{2}-\frac{5}{4}x+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{231}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{8}=\frac{\sqrt{231}i}{8} x-\frac{5}{8}=-\frac{\sqrt{231}i}{8}
Whakarūnātia.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
Me tāpiri \frac{5}{8} ki ngā taha e rua o te whārite.