Whakaoti mō x
x=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x^{2}+6x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times \frac{1}{2}\times 18}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, 6 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times \frac{1}{2}\times 18}}{2\times \frac{1}{2}}
Pūrua 6.
x=\frac{-6±\sqrt{36-2\times 18}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
x=\frac{-6±\sqrt{36-36}}{2\times \frac{1}{2}}
Whakareatia -2 ki te 18.
x=\frac{-6±\sqrt{0}}{2\times \frac{1}{2}}
Tāpiri 36 ki te -36.
x=-\frac{6}{2\times \frac{1}{2}}
Tuhia te pūtakerua o te 0.
x=-\frac{6}{1}
Whakareatia 2 ki te \frac{1}{2}.
\frac{1}{2}x^{2}+6x+18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{2}x^{2}+6x+18-18=-18
Me tango 18 mai i ngā taha e rua o te whārite.
\frac{1}{2}x^{2}+6x=-18
Mā te tango i te 18 i a ia ake anō ka toe ko te 0.
\frac{\frac{1}{2}x^{2}+6x}{\frac{1}{2}}=-\frac{18}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\frac{6}{\frac{1}{2}}x=-\frac{18}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}+12x=-\frac{18}{\frac{1}{2}}
Whakawehe 6 ki te \frac{1}{2} mā te whakarea 6 ki te tau huripoki o \frac{1}{2}.
x^{2}+12x=-36
Whakawehe -18 ki te \frac{1}{2} mā te whakarea -18 ki te tau huripoki o \frac{1}{2}.
x^{2}+12x+6^{2}=-36+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=-36+36
Pūrua 6.
x^{2}+12x+36=0
Tāpiri -36 ki te 36.
\left(x+6\right)^{2}=0
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=0 x+6=0
Whakarūnātia.
x=-6 x=-6
Me tango 6 mai i ngā taha e rua o te whārite.
x=-6
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}