Whakaoti mō x
x = -\frac{202}{35} = -5\frac{27}{35} \approx -5.771428571
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{5}=-4\times \frac{3}{4}x-20
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te \frac{3}{4}x+5.
\frac{1}{2}x+\frac{1}{5}=-3x-20
Whakareatia -4 ki te \frac{3}{4}.
\frac{1}{2}x+\frac{1}{5}+3x=-20
Me tāpiri te 3x ki ngā taha e rua.
\frac{7}{2}x+\frac{1}{5}=-20
Pahekotia te \frac{1}{2}x me 3x, ka \frac{7}{2}x.
\frac{7}{2}x=-20-\frac{1}{5}
Tangohia te \frac{1}{5} mai i ngā taha e rua.
\frac{7}{2}x=-\frac{100}{5}-\frac{1}{5}
Me tahuri te -20 ki te hautau -\frac{100}{5}.
\frac{7}{2}x=\frac{-100-1}{5}
Tā te mea he rite te tauraro o -\frac{100}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{2}x=-\frac{101}{5}
Tangohia te 1 i te -100, ka -101.
x=-\frac{101}{5}\times \frac{2}{7}
Me whakarea ngā taha e rua ki te \frac{2}{7}, te tau utu o \frac{7}{2}.
x=\frac{-101\times 2}{5\times 7}
Me whakarea te -\frac{101}{5} ki te \frac{2}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-202}{35}
Mahia ngā whakarea i roto i te hautanga \frac{-101\times 2}{5\times 7}.
x=-\frac{202}{35}
Ka taea te hautanga \frac{-202}{35} te tuhi anō ko -\frac{202}{35} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}