Whakaoti mō t
t<\frac{3}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}t-\frac{3}{4}+\frac{2}{5}t<\frac{3}{5}
Me tāpiri te \frac{2}{5}t ki ngā taha e rua.
\frac{9}{10}t-\frac{3}{4}<\frac{3}{5}
Pahekotia te \frac{1}{2}t me \frac{2}{5}t, ka \frac{9}{10}t.
\frac{9}{10}t<\frac{3}{5}+\frac{3}{4}
Me tāpiri te \frac{3}{4} ki ngā taha e rua.
\frac{9}{10}t<\frac{12}{20}+\frac{15}{20}
Ko te maha noa iti rawa atu o 5 me 4 ko 20. Me tahuri \frac{3}{5} me \frac{3}{4} ki te hautau me te tautūnga 20.
\frac{9}{10}t<\frac{12+15}{20}
Tā te mea he rite te tauraro o \frac{12}{20} me \frac{15}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{10}t<\frac{27}{20}
Tāpirihia te 12 ki te 15, ka 27.
t<\frac{27}{20}\times \frac{10}{9}
Me whakarea ngā taha e rua ki te \frac{10}{9}, te tau utu o \frac{9}{10}. I te mea he tōrunga te \frac{9}{10}, kāore e huri te ahunga koreōrite.
t<\frac{27\times 10}{20\times 9}
Me whakarea te \frac{27}{20} ki te \frac{10}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t<\frac{270}{180}
Mahia ngā whakarea i roto i te hautanga \frac{27\times 10}{20\times 9}.
t<\frac{3}{2}
Whakahekea te hautanga \frac{270}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 90.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}