Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}t-\frac{3}{4}+\frac{2}{5}t<\frac{3}{5}
Me tāpiri te \frac{2}{5}t ki ngā taha e rua.
\frac{9}{10}t-\frac{3}{4}<\frac{3}{5}
Pahekotia te \frac{1}{2}t me \frac{2}{5}t, ka \frac{9}{10}t.
\frac{9}{10}t<\frac{3}{5}+\frac{3}{4}
Me tāpiri te \frac{3}{4} ki ngā taha e rua.
\frac{9}{10}t<\frac{12}{20}+\frac{15}{20}
Ko te maha noa iti rawa atu o 5 me 4 ko 20. Me tahuri \frac{3}{5} me \frac{3}{4} ki te hautau me te tautūnga 20.
\frac{9}{10}t<\frac{12+15}{20}
Tā te mea he rite te tauraro o \frac{12}{20} me \frac{15}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{10}t<\frac{27}{20}
Tāpirihia te 12 ki te 15, ka 27.
t<\frac{27}{20}\times \frac{10}{9}
Me whakarea ngā taha e rua ki te \frac{10}{9}, te tau utu o \frac{9}{10}. I te mea he tōrunga te \frac{9}{10}, kāore e huri te ahunga koreōrite.
t<\frac{27\times 10}{20\times 9}
Me whakarea te \frac{27}{20} ki te \frac{10}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t<\frac{270}{180}
Mahia ngā whakarea i roto i te hautanga \frac{27\times 10}{20\times 9}.
t<\frac{3}{2}
Whakahekea te hautanga \frac{270}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 90.