Whakaoti mō h
h = \frac{33}{2} = 16\frac{1}{2} = 16.5
Tohaina
Kua tāruatia ki te papatopenga
2h+3\times 4+3+36=84
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
2h+12+3+36=84
Whakareatia te 3 ki te 4, ka 12.
2h+15+36=84
Tāpirihia te 12 ki te 3, ka 15.
2h+51=84
Tāpirihia te 15 ki te 36, ka 51.
2h=84-51
Tangohia te 51 mai i ngā taha e rua.
2h=33
Tangohia te 51 i te 84, ka 33.
h=\frac{33}{2}
Whakawehea ngā taha e rua ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}