Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{6}-\frac{2\left(x-12\right)}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{1}{2} ki te \frac{3}{3}. Whakareatia \frac{x-12}{3} ki te \frac{2}{2}.
\frac{3-2\left(x-12\right)}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2\left(x-12\right)}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{3-2x+24}{6}
Mahia ngā whakarea i roto o 3-2\left(x-12\right).
\frac{27-2x}{6}
Whakakotahitia ngā kupu rite i 3-2x+24.
\frac{3}{6}-\frac{2\left(x-12\right)}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{1}{2} ki te \frac{3}{3}. Whakareatia \frac{x-12}{3} ki te \frac{2}{2}.
\frac{3-2\left(x-12\right)}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2\left(x-12\right)}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{3-2x+24}{6}
Mahia ngā whakarea i roto o 3-2\left(x-12\right).
\frac{27-2x}{6}
Whakakotahitia ngā kupu rite i 3-2x+24.