Aromātai
\frac{19}{28}\approx 0.678571429
Tauwehe
\frac{19}{2 ^ {2} \cdot 7} = 0.6785714285714286
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}-\left(\frac{8}{28}-\frac{21}{28}-\left(\frac{5}{14}+1\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Ko te maha noa iti rawa atu o 7 me 4 ko 28. Me tahuri \frac{2}{7} me \frac{3}{4} ki te hautau me te tautūnga 28.
\frac{1}{2}-\left(\frac{8-21}{28}-\left(\frac{5}{14}+1\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Tā te mea he rite te tauraro o \frac{8}{28} me \frac{21}{28}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}-\left(-\frac{13}{28}-\left(\frac{5}{14}+1\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Tangohia te 21 i te 8, ka -13.
\frac{1}{2}-\left(-\frac{13}{28}-\left(\frac{5}{14}+\frac{14}{14}\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Me tahuri te 1 ki te hautau \frac{14}{14}.
\frac{1}{2}-\left(-\frac{13}{28}-\frac{5+14}{14}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Tā te mea he rite te tauraro o \frac{5}{14} me \frac{14}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}-\left(-\frac{13}{28}-\frac{19}{14}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Tāpirihia te 5 ki te 14, ka 19.
\frac{1}{2}-\left(-\frac{13}{28}-\frac{38}{28}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Ko te maha noa iti rawa atu o 28 me 14 ko 28. Me tahuri -\frac{13}{28} me \frac{19}{14} ki te hautau me te tautūnga 28.
\frac{1}{2}-\left(\frac{-13-38}{28}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Tā te mea he rite te tauraro o -\frac{13}{28} me \frac{38}{28}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}-\left(-\frac{51}{28}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Tangohia te 38 i te -13, ka -51.
\frac{1}{2}-\left(-\frac{51}{28}+\frac{7}{28}+\frac{1}{7}-\frac{3}{4}+2\right)
Ko te maha noa iti rawa atu o 28 me 4 ko 28. Me tahuri -\frac{51}{28} me \frac{1}{4} ki te hautau me te tautūnga 28.
\frac{1}{2}-\left(\frac{-51+7}{28}+\frac{1}{7}-\frac{3}{4}+2\right)
Tā te mea he rite te tauraro o -\frac{51}{28} me \frac{7}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}-\left(\frac{-44}{28}+\frac{1}{7}-\frac{3}{4}+2\right)
Tāpirihia te -51 ki te 7, ka -44.
\frac{1}{2}-\left(-\frac{11}{7}+\frac{1}{7}-\frac{3}{4}+2\right)
Whakahekea te hautanga \frac{-44}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{1}{2}-\left(\frac{-11+1}{7}-\frac{3}{4}+2\right)
Tā te mea he rite te tauraro o -\frac{11}{7} me \frac{1}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}-\left(-\frac{10}{7}-\frac{3}{4}+2\right)
Tāpirihia te -11 ki te 1, ka -10.
\frac{1}{2}-\left(-\frac{40}{28}-\frac{21}{28}+2\right)
Ko te maha noa iti rawa atu o 7 me 4 ko 28. Me tahuri -\frac{10}{7} me \frac{3}{4} ki te hautau me te tautūnga 28.
\frac{1}{2}-\left(\frac{-40-21}{28}+2\right)
Tā te mea he rite te tauraro o -\frac{40}{28} me \frac{21}{28}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}-\left(-\frac{61}{28}+2\right)
Tangohia te 21 i te -40, ka -61.
\frac{1}{2}-\left(-\frac{61}{28}+\frac{56}{28}\right)
Me tahuri te 2 ki te hautau \frac{56}{28}.
\frac{1}{2}-\frac{-61+56}{28}
Tā te mea he rite te tauraro o -\frac{61}{28} me \frac{56}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}-\left(-\frac{5}{28}\right)
Tāpirihia te -61 ki te 56, ka -5.
\frac{1}{2}+\frac{5}{28}
Ko te tauaro o -\frac{5}{28} ko \frac{5}{28}.
\frac{14}{28}+\frac{5}{28}
Ko te maha noa iti rawa atu o 2 me 28 ko 28. Me tahuri \frac{1}{2} me \frac{5}{28} ki te hautau me te tautūnga 28.
\frac{14+5}{28}
Tā te mea he rite te tauraro o \frac{14}{28} me \frac{5}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{19}{28}
Tāpirihia te 14 ki te 5, ka 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}