Whakaoti mō x
x = -\frac{13}{5} = -2\frac{3}{5} = -2.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{2}\left(-3\right)-\frac{1}{3}\left(x+2\right)=x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x-3.
\frac{1}{2}x+\frac{-3}{2}-\frac{1}{3}\left(x+2\right)=x
Whakareatia te \frac{1}{2} ki te -3, ka \frac{-3}{2}.
\frac{1}{2}x-\frac{3}{2}-\frac{1}{3}\left(x+2\right)=x
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{1}{2}x-\frac{3}{2}-\frac{1}{3}x-\frac{1}{3}\times 2=x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te x+2.
\frac{1}{2}x-\frac{3}{2}-\frac{1}{3}x+\frac{-2}{3}=x
Tuhia te -\frac{1}{3}\times 2 hei hautanga kotahi.
\frac{1}{2}x-\frac{3}{2}-\frac{1}{3}x-\frac{2}{3}=x
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
\frac{1}{6}x-\frac{3}{2}-\frac{2}{3}=x
Pahekotia te \frac{1}{2}x me -\frac{1}{3}x, ka \frac{1}{6}x.
\frac{1}{6}x-\frac{9}{6}-\frac{4}{6}=x
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri -\frac{3}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{1}{6}x+\frac{-9-4}{6}=x
Tā te mea he rite te tauraro o -\frac{9}{6} me \frac{4}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{6}x-\frac{13}{6}=x
Tangohia te 4 i te -9, ka -13.
\frac{1}{6}x-\frac{13}{6}-x=0
Tangohia te x mai i ngā taha e rua.
-\frac{5}{6}x-\frac{13}{6}=0
Pahekotia te \frac{1}{6}x me -x, ka -\frac{5}{6}x.
-\frac{5}{6}x=\frac{13}{6}
Me tāpiri te \frac{13}{6} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{13}{6}\left(-\frac{6}{5}\right)
Me whakarea ngā taha e rua ki te -\frac{6}{5}, te tau utu o -\frac{5}{6}.
x=\frac{13\left(-6\right)}{6\times 5}
Me whakarea te \frac{13}{6} ki te -\frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-78}{30}
Mahia ngā whakarea i roto i te hautanga \frac{13\left(-6\right)}{6\times 5}.
x=-\frac{13}{5}
Whakahekea te hautanga \frac{-78}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}