Whakaoti mō x
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{2}\left(-1\right)-\frac{1}{3}\left(x+3\right)=\frac{1}{6}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x-1.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}\left(x+3\right)=\frac{1}{6}
Whakareatia te \frac{1}{2} ki te -1, ka -\frac{1}{2}.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}x-\frac{1}{3}\times 3=\frac{1}{6}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te x+3.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}x-1=\frac{1}{6}
Me whakakore te 3 me te 3.
\frac{1}{6}x-\frac{1}{2}-1=\frac{1}{6}
Pahekotia te \frac{1}{2}x me -\frac{1}{3}x, ka \frac{1}{6}x.
\frac{1}{6}x-\frac{1}{2}-\frac{2}{2}=\frac{1}{6}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{1}{6}x+\frac{-1-2}{2}=\frac{1}{6}
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{6}x-\frac{3}{2}=\frac{1}{6}
Tangohia te 2 i te -1, ka -3.
\frac{1}{6}x=\frac{1}{6}+\frac{3}{2}
Me tāpiri te \frac{3}{2} ki ngā taha e rua.
\frac{1}{6}x=\frac{1}{6}+\frac{9}{6}
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{1}{6} me \frac{3}{2} ki te hautau me te tautūnga 6.
\frac{1}{6}x=\frac{1+9}{6}
Tā te mea he rite te tauraro o \frac{1}{6} me \frac{9}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{6}x=\frac{10}{6}
Tāpirihia te 1 ki te 9, ka 10.
\frac{1}{6}x=\frac{5}{3}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{5}{3}\times 6
Me whakarea ngā taha e rua ki te 6, te tau utu o \frac{1}{6}.
x=\frac{5\times 6}{3}
Tuhia te \frac{5}{3}\times 6 hei hautanga kotahi.
x=\frac{30}{3}
Whakareatia te 5 ki te 6, ka 30.
x=10
Whakawehea te 30 ki te 3, kia riro ko 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}