Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{2}\left(-1\right)=2-\frac{1}{5}\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x-1.
\frac{1}{2}x-\frac{1}{2}=2-\frac{1}{5}\left(x+2\right)
Whakareatia te \frac{1}{2} ki te -1, ka -\frac{1}{2}.
\frac{1}{2}x-\frac{1}{2}=2-\frac{1}{5}x-\frac{1}{5}\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{5} ki te x+2.
\frac{1}{2}x-\frac{1}{2}=2-\frac{1}{5}x+\frac{-2}{5}
Tuhia te -\frac{1}{5}\times 2 hei hautanga kotahi.
\frac{1}{2}x-\frac{1}{2}=2-\frac{1}{5}x-\frac{2}{5}
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
\frac{1}{2}x-\frac{1}{2}=\frac{10}{5}-\frac{1}{5}x-\frac{2}{5}
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{1}{2}x-\frac{1}{2}=\frac{10-2}{5}-\frac{1}{5}x
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{2}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x-\frac{1}{2}=\frac{8}{5}-\frac{1}{5}x
Tangohia te 2 i te 10, ka 8.
\frac{1}{2}x-\frac{1}{2}+\frac{1}{5}x=\frac{8}{5}
Me tāpiri te \frac{1}{5}x ki ngā taha e rua.
\frac{7}{10}x-\frac{1}{2}=\frac{8}{5}
Pahekotia te \frac{1}{2}x me \frac{1}{5}x, ka \frac{7}{10}x.
\frac{7}{10}x=\frac{8}{5}+\frac{1}{2}
Me tāpiri te \frac{1}{2} ki ngā taha e rua.
\frac{7}{10}x=\frac{16}{10}+\frac{5}{10}
Ko te maha noa iti rawa atu o 5 me 2 ko 10. Me tahuri \frac{8}{5} me \frac{1}{2} ki te hautau me te tautūnga 10.
\frac{7}{10}x=\frac{16+5}{10}
Tā te mea he rite te tauraro o \frac{16}{10} me \frac{5}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{10}x=\frac{21}{10}
Tāpirihia te 16 ki te 5, ka 21.
x=\frac{21}{10}\times \frac{10}{7}
Me whakarea ngā taha e rua ki te \frac{10}{7}, te tau utu o \frac{7}{10}.
x=\frac{21\times 10}{10\times 7}
Me whakarea te \frac{21}{10} ki te \frac{10}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{21}{7}
Me whakakore tahi te 10 i te taurunga me te tauraro.
x=3
Whakawehea te 21 ki te 7, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}