Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}x+\frac{1}{2}\times 3=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+3.
\frac{1}{2}x+\frac{3}{2}=2x+6
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{1}{2}x+\frac{3}{2}-2x=6
Tangohia te 2x mai i ngā taha e rua.
-\frac{3}{2}x+\frac{3}{2}=6
Pahekotia te \frac{1}{2}x me -2x, ka -\frac{3}{2}x.
-\frac{3}{2}x=6-\frac{3}{2}
Tangohia te \frac{3}{2} mai i ngā taha e rua.
-\frac{3}{2}x=\frac{12}{2}-\frac{3}{2}
Me tahuri te 6 ki te hautau \frac{12}{2}.
-\frac{3}{2}x=\frac{12-3}{2}
Tā te mea he rite te tauraro o \frac{12}{2} me \frac{3}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{3}{2}x=\frac{9}{2}
Tangohia te 3 i te 12, ka 9.
x=\frac{9}{2}\left(-\frac{2}{3}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{3}, te tau utu o -\frac{3}{2}.
x=\frac{9\left(-2\right)}{2\times 3}
Me whakarea te \frac{9}{2} ki te -\frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-18}{6}
Mahia ngā whakarea i roto i te hautanga \frac{9\left(-2\right)}{2\times 3}.
x=-3
Whakawehea te -18 ki te 6, kia riro ko -3.