Whakaoti mō x
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{2}\times 3=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+3.
\frac{1}{2}x+\frac{3}{2}=2x+6
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{1}{2}x+\frac{3}{2}-2x=6
Tangohia te 2x mai i ngā taha e rua.
-\frac{3}{2}x+\frac{3}{2}=6
Pahekotia te \frac{1}{2}x me -2x, ka -\frac{3}{2}x.
-\frac{3}{2}x=6-\frac{3}{2}
Tangohia te \frac{3}{2} mai i ngā taha e rua.
-\frac{3}{2}x=\frac{12}{2}-\frac{3}{2}
Me tahuri te 6 ki te hautau \frac{12}{2}.
-\frac{3}{2}x=\frac{12-3}{2}
Tā te mea he rite te tauraro o \frac{12}{2} me \frac{3}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{3}{2}x=\frac{9}{2}
Tangohia te 3 i te 12, ka 9.
x=\frac{9}{2}\left(-\frac{2}{3}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{3}, te tau utu o -\frac{3}{2}.
x=\frac{9\left(-2\right)}{2\times 3}
Me whakarea te \frac{9}{2} ki te -\frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-18}{6}
Mahia ngā whakarea i roto i te hautanga \frac{9\left(-2\right)}{2\times 3}.
x=-3
Whakawehea te -18 ki te 6, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}