Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}\left(x+3\right)=3-\frac{1}{3}\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+1.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{1}{4}\times 3=3-\frac{1}{3}\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te x+3.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}\left(x+2\right)
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{3}{4}x+\frac{1}{2}+\frac{3}{4}=3-\frac{1}{3}\left(x+2\right)
Pahekotia te \frac{1}{2}x me \frac{1}{4}x, ka \frac{3}{4}x.
\frac{3}{4}x+\frac{2}{4}+\frac{3}{4}=3-\frac{1}{3}\left(x+2\right)
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{1}{2} me \frac{3}{4} ki te hautau me te tautūnga 4.
\frac{3}{4}x+\frac{2+3}{4}=3-\frac{1}{3}\left(x+2\right)
Tā te mea he rite te tauraro o \frac{2}{4} me \frac{3}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}\left(x+2\right)
Tāpirihia te 2 ki te 3, ka 5.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}x-\frac{1}{3}\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te x+2.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}x+\frac{-2}{3}
Tuhia te -\frac{1}{3}\times 2 hei hautanga kotahi.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}x-\frac{2}{3}
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
\frac{3}{4}x+\frac{5}{4}=\frac{9}{3}-\frac{1}{3}x-\frac{2}{3}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{3}{4}x+\frac{5}{4}=\frac{9-2}{3}-\frac{1}{3}x
Tā te mea he rite te tauraro o \frac{9}{3} me \frac{2}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{4}x+\frac{5}{4}=\frac{7}{3}-\frac{1}{3}x
Tangohia te 2 i te 9, ka 7.
\frac{3}{4}x+\frac{5}{4}+\frac{1}{3}x=\frac{7}{3}
Me tāpiri te \frac{1}{3}x ki ngā taha e rua.
\frac{13}{12}x+\frac{5}{4}=\frac{7}{3}
Pahekotia te \frac{3}{4}x me \frac{1}{3}x, ka \frac{13}{12}x.
\frac{13}{12}x=\frac{7}{3}-\frac{5}{4}
Tangohia te \frac{5}{4} mai i ngā taha e rua.
\frac{13}{12}x=\frac{28}{12}-\frac{15}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{7}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{13}{12}x=\frac{28-15}{12}
Tā te mea he rite te tauraro o \frac{28}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{12}x=\frac{13}{12}
Tangohia te 15 i te 28, ka 13.
x=\frac{13}{12}\times \frac{12}{13}
Me whakarea ngā taha e rua ki te \frac{12}{13}, te tau utu o \frac{13}{12}.
x=1
Me whakakore atu te \frac{13}{12} me tōna tau utu \frac{12}{13}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}