Whakaoti mō x
x=\frac{3}{8}=0.375
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{2}\times \frac{1}{3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+\frac{1}{3}.
\frac{1}{2}x+\frac{1\times 1}{2\times 3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Me whakarea te \frac{1}{2} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{2\times 3}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\times \frac{2}{3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te \frac{2}{3}x-\frac{1}{6}.
\frac{1}{2}x+\frac{1}{6}+\frac{1\times 2}{4\times 3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Me whakarea te \frac{1}{4} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x+\frac{1}{6}+\frac{2}{12}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Mahia ngā whakarea i roto i te hautanga \frac{1\times 2}{4\times 3}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1\left(-1\right)}{4\times 6}=x
Me whakarea te \frac{1}{4} ki te -\frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{-1}{24}=x
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{4\times 6}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x-\frac{1}{24}=x
Ka taea te hautanga \frac{-1}{24} te tuhi anō ko -\frac{1}{24} mā te tango i te tohu tōraro.
\frac{2}{3}x+\frac{1}{6}-\frac{1}{24}=x
Pahekotia te \frac{1}{2}x me \frac{1}{6}x, ka \frac{2}{3}x.
\frac{2}{3}x+\frac{4}{24}-\frac{1}{24}=x
Ko te maha noa iti rawa atu o 6 me 24 ko 24. Me tahuri \frac{1}{6} me \frac{1}{24} ki te hautau me te tautūnga 24.
\frac{2}{3}x+\frac{4-1}{24}=x
Tā te mea he rite te tauraro o \frac{4}{24} me \frac{1}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}x+\frac{3}{24}=x
Tangohia te 1 i te 4, ka 3.
\frac{2}{3}x+\frac{1}{8}=x
Whakahekea te hautanga \frac{3}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{2}{3}x+\frac{1}{8}-x=0
Tangohia te x mai i ngā taha e rua.
-\frac{1}{3}x+\frac{1}{8}=0
Pahekotia te \frac{2}{3}x me -x, ka -\frac{1}{3}x.
-\frac{1}{3}x=-\frac{1}{8}
Tangohia te \frac{1}{8} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{1}{8}\left(-3\right)
Me whakarea ngā taha e rua ki te -3, te tau utu o -\frac{1}{3}.
x=\frac{-\left(-3\right)}{8}
Tuhia te -\frac{1}{8}\left(-3\right) hei hautanga kotahi.
x=\frac{3}{8}
Whakareatia te -1 ki te -3, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}