Whakaoti mō u
u=-\frac{2}{3}\approx -0.666666667
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { 2 } ( u - 3 ) = 2 u - \frac { 1 } { 2 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}u+\frac{1}{2}\left(-3\right)=2u-\frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te u-3.
\frac{1}{2}u+\frac{-3}{2}=2u-\frac{1}{2}
Whakareatia te \frac{1}{2} ki te -3, ka \frac{-3}{2}.
\frac{1}{2}u-\frac{3}{2}=2u-\frac{1}{2}
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{1}{2}u-\frac{3}{2}-2u=-\frac{1}{2}
Tangohia te 2u mai i ngā taha e rua.
-\frac{3}{2}u-\frac{3}{2}=-\frac{1}{2}
Pahekotia te \frac{1}{2}u me -2u, ka -\frac{3}{2}u.
-\frac{3}{2}u=-\frac{1}{2}+\frac{3}{2}
Me tāpiri te \frac{3}{2} ki ngā taha e rua.
-\frac{3}{2}u=\frac{-1+3}{2}
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{3}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{3}{2}u=\frac{2}{2}
Tāpirihia te -1 ki te 3, ka 2.
-\frac{3}{2}u=1
Whakawehea te 2 ki te 2, kia riro ko 1.
u=1\left(-\frac{2}{3}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{3}, te tau utu o -\frac{3}{2}.
u=-\frac{2}{3}
Whakareatia te 1 ki te -\frac{2}{3}, ka -\frac{2}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}