Whakaoti mō y
y<4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\times 4y+\frac{1}{2}\times 2-20<-\frac{1}{3}\left(9y-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 4y+2.
\frac{4}{2}y+\frac{1}{2}\times 2-20<-\frac{1}{3}\left(9y-3\right)
Whakareatia te \frac{1}{2} ki te 4, ka \frac{4}{2}.
2y+\frac{1}{2}\times 2-20<-\frac{1}{3}\left(9y-3\right)
Whakawehea te 4 ki te 2, kia riro ko 2.
2y+1-20<-\frac{1}{3}\left(9y-3\right)
Me whakakore te 2 me te 2.
2y-19<-\frac{1}{3}\left(9y-3\right)
Tangohia te 20 i te 1, ka -19.
2y-19<-\frac{1}{3}\times 9y-\frac{1}{3}\left(-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te 9y-3.
2y-19<\frac{-9}{3}y-\frac{1}{3}\left(-3\right)
Tuhia te -\frac{1}{3}\times 9 hei hautanga kotahi.
2y-19<-3y-\frac{1}{3}\left(-3\right)
Whakawehea te -9 ki te 3, kia riro ko -3.
2y-19<-3y+\frac{-\left(-3\right)}{3}
Tuhia te -\frac{1}{3}\left(-3\right) hei hautanga kotahi.
2y-19<-3y+\frac{3}{3}
Whakareatia te -1 ki te -3, ka 3.
2y-19<-3y+1
Whakawehea te 3 ki te 3, kia riro ko 1.
2y-19+3y<1
Me tāpiri te 3y ki ngā taha e rua.
5y-19<1
Pahekotia te 2y me 3y, ka 5y.
5y<1+19
Me tāpiri te 19 ki ngā taha e rua.
5y<20
Tāpirihia te 1 ki te 19, ka 20.
y<\frac{20}{5}
Whakawehea ngā taha e rua ki te 5. I te mea he tōrunga te 5, kāore e huri te ahunga koreōrite.
y<4
Whakawehea te 20 ki te 5, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}