Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}\times 13\times \frac{6}{k}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o 13 ko 13.
\frac{13}{2}\times \frac{6}{k}
Whakareatia te \frac{1}{2} ki te 13, ka \frac{13}{2}.
\frac{13\times 6}{2k}
Me whakarea te \frac{13}{2} ki te \frac{6}{k} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\times 13}{k}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{39}{k}
Whakareatia te 3 ki te 13, ka 39.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{2}\times 13\times \frac{6}{k})
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o 13 ko 13.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{13}{2}\times \frac{6}{k})
Whakareatia te \frac{1}{2} ki te 13, ka \frac{13}{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{13\times 6}{2k})
Me whakarea te \frac{13}{2} ki te \frac{6}{k} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{3\times 13}{k})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{39}{k})
Whakareatia te 3 ki te 13, ka 39.
-39k^{-1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-39k^{-2}
Tango 1 mai i -1.